COURSE
GUIDE

IFT 211
DIGITAL AND LOGIC DESIGN

Course Team Dr. Kehinde Adebola Sotonwa (Course
Developer/Writer) — Lagos State University, Ojo,
Lagos State
Prof Joshua Abah (Course Editor) — Nile University,
Abuja

NATIONAL OPEN UNIVERSITY OF NIGERIA

IFT 211

DIGITAL AND LOGIC DESIGN

© 2025 by NOUN Press

National Open University of Nigeria
Headquarters

University Village

Plot 91, Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office
14/16 Ahmadu Bello Way
Victoria Island, Lagos

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

First Printed 2008

Reprinted 2025

ISBN: 978-058-470-6

All rights reserved. No part of this book may be reproduced, in any
form or by any means, without permission in writing from the publisher.

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CONTENTS

Course Introduction

What you will Learn in this Course
Course Aim

Course Objectives

Working through this Course
Course Justification

Course Materials

Course Requirements

Study Units

Textbooks and References
Assignment File

Presentation Schedule

Assessment

Tutor-Marked Assignments (TMAS)
Final Examination and Grading
Course Marking Scheme

Course Overview

How to Get the Best from this Course
Tutors and Tutorials

Course Structure and Specification

PAGE

O OWOOOWOWOWOWUITRA,PR,WWWNDNDDN -

IFT 211 DIGITAL AND LOGIC DESIGN

COURSE INTRODUCTION

IFT 211 - Digital and Logic Design: Welcome to Digital and Logic
Design, This course provides a comprehensive overview of digital logic
fundamentals, covering essential topics ranging from number systems and
logic gates to sequential circuits and programmable logic devices.
Through a combination of theoretical lectures, hands-on activities, and
practical assignments, you will go into the world of digital systems design
and gain the necessary skills to analyse, design, and implement digital
circuits.

WHAT YOU WILL LEARN IN THIS COURSE

In this course, you will learn the foundational principles of digital and
logic design, including:

. Understanding different number systems and base conversions.

. Exploring complement systems and codes used in digital systems.

. Analysing and designing digital logic gates circuits.

. Mastering Boolean algebra and its application in digital circuit
design.

. Learning about canonical and standard forms for Boolean
expressions.

. Utilizing minimization techniques such as Karnaugh maps.

. Understanding the physical properties of logic gates.

. Designing combinational circuits and implementing design
procedures.

. Exploring sequential circuits, including flip-flops, latches,
registers, and counters.

. Studying memory devices classification and their applications.

. Learning about programmable logic devices such as PLAS, PLDs,
and FPGA:s.

COURSE AIM

The aim of this course is to provide you with a solid foundation in digital
and logic design principles, equipping you with the knowledge and skills
necessary to analyse, design, and implement digital circuits for a variety
of applications.

COURSE OBJECTIVES

By the end of this course, you will be able to:

1. Understand the fundamentals of number systems and perform base
conversions.
2. Analyse and design digital logic gates circuits.

w

Apply Boolean algebra techniques to simplify logic expressions.

4, Utilize minimization techniques, including Karnaugh maps, to
optimize digital circuits.

5. Design combinational and sequential circuits, including flip-flops,
latches, registers, and counters.

6. Explore memory devices classification and their applications in
digital systems.

7. Program and configure programmable logic devices such as PLAs,

PLDs, and FPGAs for various digital logic applications.

WORKING THROUGH THIS COURSE

To complete this course, you are required to study all the units, the
recommended text books, and other relevant materials. Each unit contains
some tutor - marked assignments, and at some point in this course, you
are required to submit the tutor marked assignments.

COURSE JUSTIFICATION

A comprehensive study of digital logic design is essential for
understanding the foundational principles of computer engineering and
electronics. This course covers key areas such as number systems, digital
logic gates, Boolean algebra, minimization techniques, and the design and
analysis of combinational and sequential circuits. Starting with the basics
of number systems and Boolean algebra, students will learn to work with
digital logic gates and understand canonical and standard forms.
Minimization techniques like the Karnaugh Map method and the study of
the physical properties of gates will help optimize digital circuits.

The course then explores combinational circuits, including binary
subtractors, multiplexers, decoders, and encoders, as well as sequential
circuit elements like latches and flip-flops. Further, it covers the design
and analysis of more complex sequential circuits, including flip-flop
conversion, registers, and counters. Finally, students will explore various
memory devices and programmable logic, including programmable logic
arrays, devices, and field-programmable gate arrays. The theoretical and
practical knowledge gained from this course will provide a solid
foundation, enabling students to appreciate the relevance and
interrelationships of different digital logic concepts, preparing them for
advanced studies and practical applications in digital technology.

COURSE MATERIALS

The major components of the course are:
1. Course Guide

2. Study Units

IFT 211 DIGITAL AND LOGIC DESIGN

3. Text Books
4. Assignment Files
5. Presentation Schedule

COURSE REQUIREMENTS

This is a compulsory course for all computer science students in the
University. In view of this, students are expected to participate in all the
course activities and have minimum of 75% attendance to be able to write
the final examination.

STUDY UNITS

There are 5 modules and 24 study units in this course. They are:
Module 1: Introduction to Digital Logic Design

Unit 1: Introduction to Number Systems and Base Conversion
Unit 2: Complement Systems and Codes

Unit 3: Digital Logic Gates

Unit 4: Boolean Algebra

Unit 5: Canonical and Standard Forms

Module 2: Minimization Techniques

Unit 1: Karnaugh Map Method
Unit 2: Manipulation and Minimisation
Unit 3: Physical Properties of Gates

Module 3: Combinational and Sequential Circuits

Unit 1: Combinational Circuits and Design Procedure
Unit 2: Binary Subtractor

Unit 3: Multiplexers

Unit 4: De-multiplexers

Unit 5: Decoders

Unit 6: Encoders

Unit 7: Latches

Unit 8: Flip-Flops

Module 4: Sequential Circuits
Unit 1: Sequential Circuits

Unit 2: Conversion of Flip-Flops
Unit 3: Registers

Unit 4 Counters

Module 5: Memory Devices and Programmable Logic
Unit 1: Memory Devices and Classification

Unit 2: Programmable Logic Array (PLAS)

Unit 3: Programmable Logic Devices (PLDs)

Unit 4: Field-Programmable Gate Arrays (FGPAS)
TEXTBOOKS AND REFERENCES

M. Morris Mano. Digital Logic and Computer Design.
Dr. Muhamed Mudawar. Digital Logic Design

Department of Information Technology (2018). Digital Notes on Digital
Logic Design.

Digital Circuits Number Systems
https://www.tutorialspoint.com/digital_circuits/digital_circuits_n
umber_systems.htm

Digital Circuits Base Conversions

https://www.tutorialspoint.com/digital_circuits/digital_circuits_base co
nversions.htm
Digital Circuits Codes

https://www.tutorialspoint.com/digital circuits/digital circuits codes.ht
m

Digital Circuits Error Detection Correction Codes

https://www.tutorialspoint.com/digital circuits/digital circuits error de
tection correction codes.htm

Digital Circuits Boolean Algebra

https://www.tutorialspoint.com/digital circuits/digital circuits boolean
algebra.htm

Digital Circuits Canonical Standard Forms

https://www.tutorialspoint.com/diqgital circuits/digital circuits canonica
| standard forms.htm

https://www.tutorialspoint.com/digital_circuits/digital_circuits_number_systems.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_number_systems.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_codes.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_codes.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_error_detection_correction_codes.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_error_detection_correction_codes.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_boolean_algebra.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_boolean_algebra.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_canonical_standard_forms.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_canonical_standard_forms.htm

IFT 211 DIGITAL AND LOGIC DESIGN

Digital Circuits K Map Method

https://www.tutorialspoint.com/digital circuits/digital

circuits k map

method.htm
Digital Circuits Quine-McCluskey Tabular Method

https://www.tutorialspoint.com/digital circuits/digital

circuits quine m

ccluskey tabular method.htm

Digital Circuits Logic Gates

https://www.tutorialspoint.com/digital circuits/digital

circuits logic ga

tes.htm

Digital Combinational Circuits

https://www.tutorialspoint.com/digital circuits/digital

combinational ci

reuits.htm
Digital Arithmetic Circuits

https://www.tutorialspoint.com/digital circuits/digital

arithmetic circui

ts.htm

Digital Circuits Decoders
https://www.tutorialspoint.com/digital circuits/digital

circuits decoders

htm
Digital Circuits Encoders

https://www.tutorialspoint.com/digital circuits/digital

circuits encoders

.htm

Digital Circuits Multiplexers
https://www.tutorialspoint.com/digital circuits/digital

circuits multiple

xers.htm

Digital Circuits De-Multiplexers
https://www.tutorialspoint.com/digital circuits/digital

circuits demultip

lexers.htm

Digital Circuits Programmable Logic Devices

https://www.tutorialspoint.com/digital_circuits/digital_

mable_logic_devices.htm

circuits_program

https://www.tutorialspoint.com/digital_circuits/digital_circuits_k_map_method.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_k_map_method.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_quine_mccluskey_tabular_method.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_quine_mccluskey_tabular_method.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm
https://www.tutorialspoint.com/digital_circuits/digital_combinational_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_combinational_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_arithmetic_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_arithmetic_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_decoders.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_decoders.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_encoders.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_encoders.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_multiplexers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_multiplexers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_demultiplexers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_demultiplexers.htm

Digital Circuits Sequential Circuits
https://www.tutorialspoint.com/digital circuits/digital circuits sequent
lal circuits.htm

Digital Circuits Latches
https://www.tutorialspoint.com/digital circuits/digital circuits latches.
htm

Digital Circuits Flip-Flops
https://www.tutorialspoint.com/diqgital circuits/digital circuits flip flo
ps.htm

Digital Circuits Conversion of Flip-Flops
https://www.tutorialspoint.com/digital circuits/digital circuits convers
ion of flip flops.htm

Digital Circuits Shift Registers
https://www.tutorialspoint.com/digital circuits/digital circuits shift re

gisters.htm

Digital Circuits Counters
https://www.tutorialspoint.com/digital circuits/digital circuits counter
s.htm

Minimization of Boolean Functions
https://www.slideshare.net/blaircomp2003/minimization-of-boolean-
functions-39058948

PLDs vs. FPGAs
https://www.ampheo.com/blog/plds-vs-fpgas-whats-the-difference-
between-them.html

TMA on Memory Device and Programmable Logic

https://engweb.eng.wayne.edu/~ad5781/ECECourses/ECE2610/Lecture
Notes/Lecturel3.pdf

TMA on K Map

https://www.gatevidyalay.com/tag/karnaugh-map-questions-and-
answers-pdf/

TMA on Digital Logic Design
https://www.geeksforgeeks.org/digital-logic-design-mcqs/

https://www.tutorialspoint.com/digital_circuits/digital_circuits_sequential_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_sequential_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_latches.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_latches.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flops.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flops.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_conversion_of_flip_flops.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_conversion_of_flip_flops.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_shift_registers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_shift_registers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_counters.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_counters.htm
https://www.slideshare.net/blaircomp2003/minimization-of-boolean-functions-39058948
https://www.slideshare.net/blaircomp2003/minimization-of-boolean-functions-39058948
https://www.ampheo.com/blog/plds-vs-fpgas-whats-the-difference-between-them.html
https://www.ampheo.com/blog/plds-vs-fpgas-whats-the-difference-between-them.html
https://www.gatevidyalay.com/tag/karnaugh-map-questions-and-answers-pdf/
https://www.gatevidyalay.com/tag/karnaugh-map-questions-and-answers-pdf/

IFT 211 DIGITAL AND LOGIC DESIGN

ASSIGNMENT FILE

The assignment file will be given to you in due course. In this file, you
will find all the details of the work you must submit to your tutor for
marking. The marks you obtain for these assignments will count towards
the final mark for the course. Altogether, there are 5 tutor marked
assignments for this course.

PRESENTATION SCHEDULE

The presentation schedule included in this course guide provides you with
important dates for completion of each tutor marked assignment. You
should therefore endeavour to meet the deadlines.

ASSESSMENT

There are two aspects to the assessment of this course. First, there are
tutor marked assignments; and second, the written examination.
Therefore, you are expected to take note of the facts, information and
problem solving gathered during the course. The tutor marked
assignments must be submitted to your tutor for formal assessment, in
accordance to the deadline given. The work submitted will count for 40%
of your total course mark. At the end of the course, you will need to sit
for a final written examination. This examination will account for 60% of
your total score.

TUTOR-MARKED ASSIGNMENTS (TMAS)

There are 5 TMAs in this course. You need to submit all the TMAs. The
best 3 will therefore be counted. The total marks for the best five (3)
assignments will be 40% of your total course mark.

FINAL EXAMINATION AND GRADING

The final examination for the course will carry 60% percentage of the
total marks available for this course. The examination will cover every
aspect of the course, so you are advised to revise all your corrected
assignments before the examination.

This course endows you with the status of a teacher and that of a learner.
This means that you teach yourself and that you learn, as your learning
capabilities would allow. It also means that you are in a better position to

determine and to ascertain the what, the how, and the when of your
language learning. No teacher imposes any method of learning on you.

The course units are similarly designed with the introduction following
the contents, then a set of objectives and then the dialogue and so on. The
objectives guide you as you go through the units to ascertain your
knowledge of the required terms and expressions.

COURSE MARKING SCHEME

The following table includes the course marking scheme

Table 1: Course Marking Scheme

Assessment Marks

Assignments 1-5 5 assignments, 40% for the best 3 total = 8% X 5
= 40%

Final Examination | 60% of overall course marks

Total 100% of Course Marks

COURSE OVERVIEW

This table indicates the units, the number of weeks required to complete
them and the assignments.

Unit | Title of the Work Weeks Assessment
(End of
Unit)
Course Guide

Module 1 Introduction to Digital Logic Design

1 Introduction to Number Systems and

Base Conversion

Week 1
2 Complement Systems and Codes Assessment
— - and

3 Digital Logic Gates Week 2 1
4 Boolean Algebra
5 Canonical and Standard Forms

Module 2 Minimization Techniques
1 Karnaugh Map Method Week 3 Assessment
2 Manipulation and Minimisation and 5
3 Physical Properties of Gates Week 4

Module 3 Combinational and Sequential Circuits
1 Combinational Circuits and Design | Week 5
Procedure to

2 Binary Subtractor Week 8

Assessment
3

IFT 211 DIGITAL AND LOGIC DESIGN

Multiplexers

De-multiplexers

Decoders

Encoders

Latches

Flip-Flops

Module 4 Sequential Circuits
Sequentl.al Clrcu[ts Week 9
Conversion of Flip-Flops and Assessment
Registers Week 10 4
Counters

Module5 Memory Devices and Programmable Logic
Memory Devices and Classification
Programmable Logic Array (PLAs) | Week 11
Programmable Logic Devices (PLDs) | and
Field-Programmable Gate Arrays | Week 12
(FGPAS)

oONOO OB lW

PPIWIN(F

Assessment
5

PIWINEF

HOW TO GET THE BEST FROM THIS COURSE

In distance learning the study units replace the university lecturer. This is
one of the great advantages of distance learning; you can read and work
through specially designed study materials at your own pace, and at a time
and place that suit you best. Think of it as reading the lecture instead of
listening to a lecturer. In the same way that a lecturer might set you some
reading to do, the study units tell you when to read your set books or other
material. Just as a lecturer might give you an in-class exercise, your study
units provide exercises for you to do at appropriate points.

Each of the study units follows a common format. The first item is an
introduction to the subject matter of the unit and how a particular unit is
integrated with the other units and the course as a whole. Next is a set of
learning objectives. These objectives enable you know what you should
be able to do by the time you have completed the unit. You should use
these objectives to guide your study. When you have finished the units
you must go back and check whether you have achieved the objectives. If
you make a habit of doing this, you will significantly improve your
chances of passing the course.

Remember that your tutor’s job is to assist you. When you need help,

don’t hesitate to call and ask your tutor to provide it.

1. Read this Course Guide thoroughly.

2. Organize a study schedule. Refer to the ‘Course Overview’ for
more details. Note the time you are expected to spend on each unit
and how the assignments relate to the units. Whatever method you

10

chose to use, you should decide on it and write in your own dates
for working on each unit.

3. Once you have created your own study schedule, do everything
you can to stick to it. The major reason that students fail is that
they lag behind in their course work.

4, Turn to Unit 1 and read the introduction and the objectives for the
unit.
5. Assemble the study materials. Information about what you need

for a unit is given in the Overview at the beginning of each unit.
You will almost always need both the study unit you are working
on and one of your set of books on your desk at the same time

6. Work through the unit. The content of the unit itself has been
arranged to provide a sequence for you to follow. As you work
through the unit you will be instructed to read sections from your
set books or other articles. Use the unit to guide your reading.

7. Review the objectives for each study unit to confirm that you have
achieved them. If you feel unsure about any of the objectives,
review the study material or consult your tutor.

8. When you are confident that you have achieved a unit’s objectives,
you can then start on the next unit. Proceed unit by unit through
the course and try to pace your study so that you keep yourself on
schedule.

9. When you have submitted an assignment to your tutor for marking,
do not wait for its return before starting on the next unit. Keep to
your schedule. When the assignment is returned, pay particular
attention to your tutor’s comments, both on the tutor-marked
assignment form and also written on the assignment. Consult your
tutor as soon as possible if you have any questions or problems.

10. After completing the last unit, review the course and prepare
yourself for the final examination. Check that you have achieved
the unit objectives (listed at the beginning of each unit) and the
course objectives (listed in this Course Guide).

TUTORS AND TUTORIALS

There are 12 hours of tutorials provided in support of this course. You
will be notified of the dates, times and location of these tutorials, together
with the name and phone number of your tutor, as soon as you are
allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close
watch on your progress and on any difficulties you might encounter and
provide assistance to you during the course. You must mail or submit your
tutor-marked assignments to your tutor well before the due date (at least
two working days are required). They will be marked by your tutor and
returned to you as soon as possible.

11

IFT 211 DIGITAL AND LOGIC DESIGN

Do not hesitate to contact your tutor by telephone, or e-mail if you need
help. The following might be circumstances in which you would find help
necessary. Contact your tutor if:

. You do not understand any part of the study units or the assigned
readings

. You have difficulty with the self-tests or exercises

. You have a question or problem with an assignment, with your
tutor’s comments on an assignment or with the grading of an
assignment.

You should try your best to attend the tutorials. This is the only chance to
have face to face contact with your tutor and to ask questions which are
answered instantly. You can raise any problem encountered in the course
of your study. To gain the maximum benefit from course tutorials, prepare
a question list before attending them. You will learn a lot from
participating in discussions actively.

12

Course Structure and Specification

Modules | ILOs: By the Teaching Required
and Units | end of this | Learning Technique Hours for
unit, you | Activities Study
will be able
to:
Module 1
Unit 1. e Unde | e Lect |e Visual Approxim
Introducti | rstand the | ure on the | aids illustrating | ately 2
on to | fundamental | basics of | the concept of | hours.
Number |s of number | number different
Systems | systems systems and | number
and Base | including their systems.
Conversio | binary, significance | e Step-by-
n decimal, in digital | step
octal, and | logic. demonstrations
hexadecimal | o Pract | of base
. iCe exercises | conversion
. Abilit | on methods.
y to convert | converting
numbers numbers
between between
different binary,
number decimal,
systems. octal, and
hexadecima
| systems.
Unit 2:|e Unde | e Lect |e Example | Approxim
Complem | rstand the | ure on | sillustrating the | ately 1.5
ent concepts of | complement | concept of | hours.
Systems | complement | systems and | complement
and Codes | systems their systems and
including applications | their relevance.
ones' in digital | e Interacti
complement | logic. ve activities for
and twos' | e Pract | practicing code
complement | ice exercises | conversion.
. on
o Famil | converting
larity with | numbers to
different ones'
codes such | complement
as binary land twos'
coded

13

IFT 211 DIGITAL AND LOGIC DESIGN

decimal complement

(BCD). :
Unit 3:|e Unde | e Lect |e Visual | Approxim
Digital rstand the | ure on the | demonstrations | ately 2
Logic basic types | different of gate behavior | hours.
Gates of digital | types of |using circuit

logic gates | digital logic | diagrams.

including gates and |e Group

AND, OR, | their activities for

NOT, behaviour. | analyzing and

NAND, . Hand | designing logic

NOR, and |s-on circuits.

XOR. practice

o Famil | constructing

larity with | truth tables

truth tables | and

and logic | analysing

gate gate

operation. operations.
Unit 4:|e Unde | e Lect |e Step-by- | Approxim
Boolean |rstand the |ure on the | step examples | ately 2.5
Algebra | fundamental | principles of | of Boolean | hours.

concepts of | Boolean expression

Boolean algebra and | simplification.

algebra its) Interacti

including application | ve exercises for

basic in digital | practicing

theorems logic. Boolean

and laws. o Pract | algebra

. Abilit | ice exercises | manipulation.

y to simplify | on

Boolean simplifying

expressions | Boolean

using expressions

algebraic using

manipulatio | algebraic

n. laws.
Unit 5:e Unde | e Lect |e Visual | Approxim
Canonical | rstand the | ure on | aids illustrating | ately 2
and concepts of | canonical the concept of | hours.
Standard | canonical and standard | canonical and
Forms and standard | forms and | standard forms.

forms of | their 3 Step-by-

Boolean significance | step

expressions. | in digital | demonstrations

of converting

14

logic
design.

° Pract
ice exercises
on

Boolean
expressions.

converting
Boolean
expressions
to canonical
and standard
forms.
Module 2
Unit 1:|e Unde | o Lect |e Step-by- | Approxim
Karnaugh |rstand the |ure on the | step examples | ately 2.5
Map concept of | principles of | of Karnaugh | hours.
Method Karnaugh Karnaugh map
maps as a| maps and | simplification.
graphical their 3 Guided
method for | application | practice
simplifying | in logic | sessions for
Boolean minimizatio | solving
expressions. | n. Karnaugh map
o Abilit | o Pract | problems.
y to use | iceexercises
Karnaugh on using
maps to | Karnaugh
minimize maps to
logic simplify
functions. logic
expressions.
Unit 2:|e Unde | e Lect |e Demonst | Approxim
Manipulat | rstand ure on | rations of | ately 2.5
jon and | various different algebraic hours.
Minimiza | methods for | techniques | manipulation
tion manipulatin | for techniques for
g and | manipulatin | logic
minimizing | g and | simplification.
Boolean minimizing | e Interacti
expressions. | Boolean ve sessions for
) Abilit | expressions. | practicing
y to apply|e Pract | problem-
algebraic ice exercises | solving skills.
laws and | on applying
theorems for | algebraic
logic laws and

15

IFT 211 DIGITAL AND LOGIC DESIGN
simplificatio | theorems for
n. simplificati
on.
Unit 3:|e Unde | e Lect |e Visual Approxim
Physical |rstand the [ure on the | demonstrations |ately 2
Properties | physical physical of gate | hours.
of Gates | properties of | characteristi | properties such
logic gates | cs of logic | as fan-in, fan-
including gates and | out, and
fan-in, fan- | their impact | propagation
out, and | on circuit | delay.
propagation | performanc | e Example
delay. e. s illustrating
o Famil | o Disc | timing
larity with | ussion on | diagrams
timing timing
diagrams diagrams
Module 3
Unit 1:|e Unde | e Lect |e Step-by- | Approxim
Combinat | rstand the | ure on the | step examples |ately 2.5
ional concept of | basics of | of hours.
Circuits combination | combination | combinational
and al circuits | al circuits | circuit design
Design and their | and their | procedures.
Procedure | role in | design o Group
digital logic | methodolog | activities for
design. y. designing and
. Abilit | e Pract | analyzing
y to follow | ice exercises | combinational
the design | on circuits.
procedure designing
for combination
combination |al circuits
al circuits. using truth
tables and
logic gates.
Unit 2. e Unde | e Lect |e Visual Approxim
Binary rstand the | ure on the | demonstrations |ately 2
Subtracto | operation principles of | of binary | hours.
r and design | binary subtraction and
of binary | subtraction | subtractor
subtractors | and binary | circuit
in digital | subtractor operation.
circuits. circuits.) Guided
practice

16

. Abilit
y to design
binary
subtractors
using logic
gates.

° Pract
ice exercises
on
designing
binary
subtractors
using logic
gates.

sessions for
designing and
analyzing
binary
subtractors.

Unit 3:

Multiplex
ers

) Unde
rstand the
concept and
operation of
multiplexers
(MUX).

) Abilit
y to design
and analyse
multiplexer
circuits.

° Lect
ure on the
principles of
multiplexers
and their
applications

° Pract
ice exercises
on
designing
and
implementi
ng
multiplexer
circuits.

o Step-by-
step
explanations of
multiplexer
operation and
circuit design.

o Interacti
ve sessions for
designing and
testing
multiplexer
circuits.

Approxim
ately 2
hours.

Unit 4:

De-
multiplex
ers

. Unde
rstand the
concept and
operation of
de-
multiplexers
(DEMUX).
. Abilit
y to design
and analyse
de-
multiplexer
circuits.

. Lect
ure on the
principles of
de-

multiplexers
and their
applications

. Pract
ice exercises
on
designing
and
implementi
ng de-
multiplexer
circuits.

. Detailed
explanations of
de-multiplexer
operation and
circuit design.

. Hands-
on activities for
designing and
testing de-
multiplexer
circuits.

Approxim
ately 2
hours.

Unit 5:

Decoders

. Unde
rstand the
concept and
operation of
decoders.

) Lect
ure on the
principles of
decoders

and their

) Step-by-
step
explanations of
decoder

Approxim
ately 2
hours.

17

IFT 211

DIGITAL AND LOGIC DESIGN

o Abilit | role in | operation and
y to design | digital circuit design.
and analyse | systems. 3 Interacti
decoder . Pract | ve sessions for
circuits for | ice exercises | designing and
various on testing decoder
applications. | designing circuits.
decoder
circuits for
different
scenarios.
Unit 6:]e Unde | e Lect |e Lecture | Approxim
Encoders |rstand the | ure on the |on the | ately 2
concept and | principles of | principles of | hours.
operation of | encoders encoders and
encoders. and their | their role in
) Abilit | role in | digital systems.
y to design | digital 3 Practice
and analyse | systems. exercises on
encoder . Pract | designing
circuits for | ice exercises | encoder circuits
various on for different
applications. | designing scenarios.
encoder
circuits for
different
scenarios.
Unit 7: e Unde | e Lect |e Visual Approxim
Latches rstand the | ure on the | demonstrations | ately 2
principles fundamental | of latch | hours.
and s of latches | operation and
operation of | and their | circuit design.
latches in | significance | e Guided
sequential in practice
circuits. sequential sessions for
. Abilit | circuit analyzing and
y to analyse | design. designing latch
and design | e Pract | circuits.
latch circuits | ice exercises
for various | on
applications. | analyzing
and
designing
latch
circuits.

18

Unit 8:|e Unde | e Lect |e Lecture | Approxim
Flip- rstand the | ure on the |on the | ately 2
Flops principles fundamental | fundamentals hours.

and s of flip- | of flip-flops and

operation of | flops and | their role in

flip-flops in | their role in | sequential

sequential sequential circuit design.

circuits. circuit) Practice

. Abilit | design. exercises on

y to analyze | e Pract | analyzing and

and design | ice exercises | designing flip-

flip-flop on flop circuits.

circuits for | analyzing

various and

applications. | designing

flip-flop
circuits.

Module 4
Unit 1. e Unde | e Lect |e Visual Approxim
Sequentia | rstand the | ure on the | aids illustrating | ately 2.5
| Circuits | basic fundamental | the differences | hours.

architectural | s of | between

differences | sequential combinational

between circuits and | and sequential

combination | their circuits.

al and | architectural | e Example

sequential distinctions. | s demonstrating

circuits. . Disc |the Dbehavior

) Famil | ussion on | and

larity with | the applications of

the operation sequential

operation and circuits.

and characteristi

characteristi | cs of

cs of | sequential

sequential circuits.

circuits.
Unit 2:|e Unde | e Lect |e Step-by- | Approxim
Conversio | rstand the | ure on the | step ately 2
n of Flip- | characteristi | characteristi | explanations of | hours.
Flops cs and | cs and | flip-flop

operation of | behavior of | characteristics

different various flip- | and conversion

types of flip- | flops methods.

flops. including

19

IFT 211

DIGITAL AND LOGIC DESIGN

J Abilit | SR, JK, D, | e Guided
y to convert |and T flip- | practice
flip-flops flops. sessions for
from one|e Pract | converting flip-
type to | ice exercises | flops..
another. on
converting
flip-flops
from one
type to
another.
Unit 3:|e Unde | e Lect |e Visual | Approxim
Registers |rstand the | ure on the | demonstrations | ately 2
concept and | principles of | of register | hours.
operation of | registersand | operation and
registers in | their circuit design.
digital significance | o Hands-
systems. in digital | on activities for
o Abilit | systems. designing and
y to design | e Pract | testing register
and analyze | ice exercises | circuits.
register on
circuits for | designing
various and
applications. | implementi
ng register
circuits.
Unit 4: e Unde | e Lect |e Detailed | Approxim
Counters | rstand the | ure on the | explanations of | ately 2
principles fundamental | counter hours.
and s of counters | operation and
operation of | and their | circuit design.
counters in | applications | e Interacti
digital : ve sessions for
systems. . Pract | analyzing and
o Abilit | ice exercises | designing
y to design | on counter circuits.
and analyze | designing
counter and
circuits for | implementi
various ng counter
counting circuits.
applications.
Module 5

20

Unit 1. e Unde | e Lect |e Visual Approxim
Memory |rstand the | ure on the |aids illustrating | ately 2.5
Devices | fundamental | principles of | the different | hours.
and s of memory | memory types of
Classifica | devices devices and | memory
tion including their devices and

ROM, classificatio | their

RAM, and |n. classification.

their o Disc |e Real-

classificatio | ussion on | world examples

n. the of memory

o Abilit | characteristi | applications.

y to classify | cs and

different applications

types of | of different

memory types of

devices memory.

based on

their

characteristi

cs and

applications.
Unit 2. e Unde | e Lect |e Step-by- | Approxim
Program | rstand the | ure on the | step ately 2
mable concept and | principles of | explanations of | hours.
Logic operation of | PLAs and | PLA
Array Programmab | their architecture and
(PLAS) le Logic | architecture. | operation.

Arrays o Pract | e Guided

(PLAS). ice exercises | practice

) Abilit | on sessions for

y to design | designing designing and

and and programming

implement | programmin | PLAs.

logic g PLAs for

functions specific

using PLAs. | logic

functions.

Unit 3:|e Unde | e Lect |e Visual | Approxim
Program |rstand the |ure on the | demonstrations |ately 2
mable concept and | principles of | of PLD | hours.
Logic operation of | PLDs and | architecture and
Devices | Programmab | their configuration
(PLDs) le Logic | architecture. | methods.

Devices . Pract | e Hands-

(PLDs). ice exercises | on activities for

21

IFT 211

DIGITAL AND LOGIC DESIGN

o Abilit | on programming

y to program | programmin | and testing

and g and | PLDs.

configure configuring

PLDs for | PLDs using

specific hardware

logic description

functions. languages.
Unit 4:]|e Unde |e Lect |e Detailed | Approxim
Field- rstand the | ure on the | explanations of | ately 2.5
Program | concept and | principles of | FPGA hours.
mable operation of | FPGAs and | architecture and
Gate Field- their configuration
Arrays Programmab | architecture. | methods.
(FPGAS) |le Gate | o Pract | e Interacti

Arrays ice exercises | ve sessions for

(FPGAS). on programming

o Abilit | programmin | and testing

y to program | g and | FPGA:s.

and configuring

configure FPGAs for

FPGAs for | various

complex applications

digital

systems.

22

MAIN
COURSE

CONTENT
Module 1 Introduction to Digital Logic Design

Unit 1 Introduction to Number Systems and Base Conversion..

Unit 2 Complement Systems and Codes
Unit 3 Digital Logic Gates

Unit 4 Boolean Algebra

Unit 5 Canonical & Standard Forms

Module 2 Minimization Techniques

Unit 1 The Karnaugh Map Method
Unit 2 Manipulation and Minimisation
Unit 3 Physical properties of gates

Module 3 Combinational and Sequential Circuits

Unit 1 Combinational Circuits and Design Procedure
Unit 2 Binary Subtractor

Unit 3 Multiplexers

Unit 4 De-Multiplexers

Unit5 Decoder

Unit 6 Encoders

Unit 7 Latches

Unit 8 Flip-Flops

Module 4 Sequential Circuits
Unit 1 Sequential Circuits

Unit 2 Conversion of Flip-Flops
Unit 3 Registers

Unit 4 Counters

Module 5 Memory Devices and Programmable Logic

Unit 1: Memory Devices and Classification
Unit 2: Programmable Logic Array

Unit 3: Programmable Logic Device

Unit 4: Field-Programmable Gate Arrays

PAGE

25

36
44
53
56

63

63
71
76

82

82
87
91
98
104
108
114
117

126
126
127
135
142

149
152
155
156

23

IFT 211 DIGITAL AND LOGIC DESIGN

Module 1 Introduction to Digital Logic Design

Unit 1 Introduction to Number Systems and Base Conversion
Unit 2 Complement Systems and Codes

Unit 3 Digital Logic Gates

Unit 4 Boolean Algebra

Unit5 Canonical and Standard Forms

Unit 1 Introduction to Number Systems and Base Conversion

What is a Digital System?

Imagine digital systems as interconnected building blocks, handling
information in a special way. These systems work with discrete chunks of
data, represented in binary form - ones and zeros. You encounter digital
systems in many everyday gadgets like calculators, computers, and even
digital watches.

A Digital system is an interconnection of digital modules and it is a
system that manipulates discrete elements of information that is
represented internally in the binary form.

Digital Systems Characteristics

Where do you find Digital System? You encounter digital systems in
many everyday gadgets like calculators, computers, and even digital
watches.

What makes digital systems ticks? Let's peek inside the digital world to

see what sets it apart:

o Digital systems handle information bit by bit, much like
assembling a puzzle piece by piece. Each piece, whether it's a
number or a letter, fits snugly into the bigger picture, allowing the
system to process and understand the information it receives.

o Digital systems communicate using signals, which act like
messengers delivering important information. These signals travel
through the system, ensuring that data reaches its destination
accurately and efficiently. It's similar to how we use signals like
Wi-Fi or Bluetooth to connect devices and share information.

o Picture digital systems as giant word puzzles, where numbers and
letters are the building blocks. From counting numbers to alphabet
letters, these systems can handle a wide range of data, making them
versatile tools in our digital world.

. At the core of digital communication is the binary code, a language
made up of just two symbols: 0 and 1. Much like a traffic light with

24

only two options - green for go and red for stop - digital signals
use this binary language to convey information. It's a simple yet
powerful system that forms the backbone of digital technology.

) Every signal in a digital system represents a single binary digit,
known as a bit. Think of bits as the smallest units of information,
like tiny switches that can be either on (1) or off (0). Just like how
a single Lego brick contributes to a larger construction, each bit
plays a crucial role in forming the digital landscape we interact
with every day.

Comparison of Analog Systems and Digital Systems

o Representation of Information:

Analog Systems: Analog systems represent data using continuous signals
that vary over time. These signals can take on any value within a range.
Examples include analogue audio signals from a microphone, analogue
temperature sensors, and analogue clocks.

Digital Systems: Digital systems represent data using discrete signals
that have distinct, quantized values. These values are usually binary,
represented by Os and 1s. Examples include digital audio files, digital
thermometers, and digital clocks.

o Accuracy and Precision:

Analog Systems: Analog systems can suffer from noise and distortion,
which can reduce accuracy and precision, especially over long distances
or time periods. However, analogue systems can often capture nuances
that digital systems may miss.

Digital Systems: Digital systems are highly resistant to noise and
distortion, providing high accuracy and precision. Digital signals can be
transmitted over long distances without significant degradation.

o Processing and Manipulation:

Analog Systems: Analog signals are processed using analogue circuits,
which often require specialized components such as operational
amplifiers and filters. Manipulating analogue signals may involve
techniques like amplification, filtering, and modulation.

Digital Systems: Digital signals are processed using digital circuits,
typically implemented using digital logic gates and microprocessors.
Manipulating digital signals involves operations like encoding, decoding,
compression, and encryption.

25

IFT 211 DIGITAL AND LOGIC DESIGN

Advantages of Digital System over Analog System

) Ease of Storage and Transmission: Digital signals can be easily
stored, transmitted, and replicated without degradation using digital
storage devices and communication protocols. Digital storage devices
offer higher storage densities and faster access times compared to
analogue storage mediums.

o Robustness: Digital systems are more robust against
environmental factors such as temperature variations and electromagnetic
interference. They can withstand harsh operating conditions better than
analogue systems, making them suitable for use in challenging
environments.

o Integration and Compatibility: Digital systems can integrate
easily with other digital devices and systems, facilitating interoperability
and compatibility. Digital communication protocols and standards ensure
seamless connectivity between different digital devices and platforms.

o Cost-Effectiveness: While digital systems may have higher initial
implementation costs due to the need for digital logic circuits and
processors, they often offer more cost-effective solutions in the long run.
Digital technology enables higher levels of automation, efficiency, and
scalability, leading to reduced operational costs over time.

Number System

Understanding Number Systems: The Foundation of Counting and
Computing;

Number systems serve as the backbone of counting and computation,
providing a structured way to represent quantities. In the digital realm,
modern computers communicate and operate using binary numbers,
which consist of only two digits: 0 and 1. However, humans typically rely
on the decimal number system in everyday life.

Decimal vs. Binary: Consider the decimal number 18. In binary, it is

represented as 10010. Notice how binary numbers require more digits to

represent the same value compared to decimal numbers. For larger
numbers, dealing with lengthy binary strings becomes cumbersome. To
address this issue, alternative number systems have emerged:

1. Octal Number System (Base 8): This system uses digits from 0
to 7, providing a more compact representation for large numbers
compared to binary.

2. Hexadecimal Number System (Base 16): Hexadecimal numbers
employ digits from 0 to 9, along with additional symbols from A
to F. This system offers an even more concise representation,
making it particularly useful in computer science and digital
electronics.

26

Binary Coded Decimal (BCD) System: BCD is a binary-encoded
representation of decimal numbers. Unlike pure binary, BCD uses
groups of binary digits to represent each decimal digit, offering a
compromise between binary and decimal systems.
Defining Number Systems: To understand any number system, we must
specify its base, which determines the total number of available digits.
For example, the binary system has a base of 2, while the decimal system
has a base of 10. In any number system, the first digit is always zero, and
the last digit is always one less than the base.

Binary number system:
Understanding the Binary Number System: Cracking the Code of 0s and

Numbers with Different Bases
Decimal Binary Octal Hexadecimal
{base 10) (base 2) (base 8) (base 16}
00 0000 o0 0
0l 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
1s;

The binary number system, with a radix of 2, is the language of
computers, relying solely on two digits: 0 and 1. In this system, the weight
of each digit is expressed as a power of 2.

b

Breaking Down Binary:
Radix of 2: In binary, we work with a base of 2, meaning there are
only two available digits: 0 and 1. This simplicity allows for efficient
digital communication and computation.

1.

o'y

n

27

IFT 211 DIGITAL AND LOGIC DESIGN

2. Significant Bits: Within a binary number, the leftmost bit holds
the highest weight and is known as the Most Significant Bit (MSB).
Conversely, the rightmost bit carries the lowest weight and is called the
Least Significant Bit (LSB). These bits play crucial roles in determining
the value of the binary number.

Putting Binary into Practice: For example, let's convert the binary
number 1001.01: into its decimal equivalent:

1001.01,=(1x 2+ (0x29) + (0x2) + (1 x 29 + (0 x 21) + (1 x 27?)
1001.01,=(1%x8)+(0x4)+(0x2)+ (1 x1)+(0x0.5) +(1x0.25)
1001.01,=8+0+0+1+0+0.25

1001.01> = 9.2510

Decimal Number System: The decimal system, familiar to us all, use ten
symbols: 0 through 9, creating a base of 10. Every time we count from 0
to 9 and start again, we're traversing one decimal place.

Octal Number System: Digital systems primarily work with binary
numbers, which can get lengthy. To simplify, we use shorthand notations
like octal and hexadecimal. Octal, with a base of 8, utilizes the first eight
digits of the decimal system (0 through 7).

Hexadecimal Number System: Hexadecimal, with a base of 16, expands
our numerical horizons even further. It embraces 16 symbols, including
the decimal digits 0 through 9 and the letters A through F. These letters
represent the values 10 through 15, offering a convenient way to express
large numbers in a compact format.

Number Base Conversions

Navigating Number Base Conversions: Bridging the gap between
Humans and Computers. Humans and computers each have their
preferred numerical languages: decimal for us and binary for computers.
However, translating between these systems s essential for
communication between humans and machines.

i.Conversion of Binary Numbers to Octal Numbers:
) Divide the binary number into groups of three digits (23), starting
from the right.
o Convert each group of three binary digits into its octal equivalent.

. Concatenate the octal equivalents of each group to get the final
octal number.

28

i.Conversion of Binary Numbers to Hexadecimal Numbers:

010 010 111 .110 010

! O11
A \J AN A AL« A AN F A J o~ \ e e o UV b

11 /MM 1 DN Yy OZyr=y - oy
L10M)]) g avVa

o Divide the binary number into groups of four digits (2%), starting
from the right.

) Convert each group of four binary digits into its hexadecimal
equivalent.

) Concatenate the hexadecimal equivalents of each group to get the

final hexadecimal number.

iii.Octal to Binary Conversion:

01101110 —» Original binary number
0110 1110 » Grouped binary number
6 E » Hex value of grouped binary
number
(01101110)2 = (6E)1s B Converted value
o Convert each octal digit into its three-bit binary equivalent.
o Concatenate the binary equivalents of each octal digit to get the

final binary number.

iv.Hexadecimal to Binary Conversion:

3 4 340 5

. Convert each hexadecimal digit into its four-bit binary equivalent.
. Concatenate the binary equivalents of each hexadecimal digit to
get the final binary number.

29

IFT 211 DIGITAL AND LOGIC DESIGN

3AB2

NN

0011 1010 1011 0010

3AB2,,=11101010110010,

v.Octal to Decimal Conversion:
o Multiply each octal digit by 8%, where k is the position of the digit
(starting from the right).

o Sum up the products to obtain the decimal equivalent.
e —
2754,= 2x83 1024
—_—
7 x 8 4438
—_—
bx 8 40
B
4 x 8° 4
1516,
. Decimal to Octal Conversion:
o Divide the decimal number by 8 successively and record the
remainders.
) The remainders, read from bottom to top, give the octal equivalent

of the decimal number.

30

Number Remainder

8 | 136 0
8 | 17 1
8| 2 2
O . | lI‘;lumber now

(136)1 = (210)g

vi.Hexadecimal to Decimal Conversion:

Multiply each hexadecimal digit by 16%, where k is the position of

the digit (starting from the right).

Sum up the products to obtain the decimal equivalent.

Digit 5 4 P D 2
Place value |6| | 60 |6'| | 6‘2
54.D26

=5¢16'+4+16°+D¢- 6" +2¢]62
=516 +4+16°+ 316" +2+ 162
=80 +4 +0.8125 + 0.0078125

= 84.8203 125

Decimal to Hexadecimal Conversion:

Divide the decimal number by 16 successively and record the
remainders.

Convert each remainder greater than 9 to its hexadecimal
equivalent (A=10, B=11, ..., F=15).

The remainders, read from bottom to top, give the hexadecimal

equivalent of the decimal number.

31

IFT 211 DIGITAL AND LOGIC DESIGN

vii.Octal to Hexadecimal Conversion:

(2297),, = (?),

@ Successive ©® Note remainders.
division Change to hexadecimal.
16| 2297 | 9 9
16| 143 |15—> F | @
bottom up
16 8 8 8

© = 8F9

Stop

dividing - —

are o ((2297), = (8F9),
o Convert the octal number to binary.
o Convert the binary number to hexadecimal.

3 4 3.40Q 5
AR

011 100 011 100 000 101

1110 0011 1000 0010 1000
\ 4 y 4
E 3 8 2 8

So, (343.405), = (E3.828)

viii.Hexadecimal to Octal Conversion:
o Convert the hexadecimal number to binary.

A4 BS59 E
/L VNN
1010 0100 1011 .0101 1001 1110

101 001 001 011 .010 110 011 110

vy VLl
5 1 1 3 26 3 6

So, (A4B.59E), = (5113.2636),

. Convert the binary number to octal.

ix.One’s Complement and Two’s Complement:

32

) One's Complement: Invert all bits in the binary number (Os
become 1s and vice versa) to get the one's complement.

. Two's Complement: Take the one's complement and add 1 to the
result to obtain the two's complement.

SELF ASSESMENT EXERCISES

To represent -34 in 2’s complement form

+34 = 00100010
O S
11011101 (1scomplementof+34)

+ 1

-34 = 11011110 (2scomplement of + 34)

Multiple Choice Questions

1. What is the base of the binary number system?
A 8

B 10

C 2

D 16

Answer: C

2. Which number system uses digits 0—7?

A Decimal

B Binary

C Hexadecimal

D Octal

Answer: D

3. What is the binary equivalent of decimal 18?
A 10010

B 11001

C 10100

D 11100

Answer: A

4, What is the most significant bit (MSB) in binary?
A Rightmost bit

B Leftmost bit

C. Middle bit

D. Least significant bit

Answer: B

5. Which system uses digits and letters A—F?

33

IFT 211 DIGITAL AND LOGIC DESIGN

Binary

Octal

Hexadecimal

. Decimal

nswer: C

What is the decimal equivalent of binary 1001.01?

9.25

10.5

8.75

9.5

nswer: A

What is the first step in converting binary to hexadecimal?
Divide by 8

Group digits in threes

Group digits in fours

Multiply by 16

nswer: C

What does BCD stand for?

Binary Code Decimal

Binary Conversion Data

Base Code Decimal

Binary Count Digit

nswer: A

What is the base of the decimal system?
2

8

10

16

Answer: C

10. Which conversion method involves dividing by 8 and reading
remainders?

A. Decimal to Binary

B. Decimal to Octal

C. Binary to Hex

D. Hex to Decimal

DOWPOPUOTPPPUOWPIPUOTPOP0O0 B P

Answer: B

Fill in the Blank Questions

1. The binary system uses only digits. — two

2. The hexadecimal system includes digits 0-9 and letters
.—AtoF

3. The leftmost bit in a binary number is called the . —

MSB

4, BCD stands for . — Binary Coded Decimal

5. To convert decimal to octal, divide by .— 8

34

Unit 2 Complement Systems and Codes

Binary codes are methods of representing data using binary digits (Os and
1s). They are widely used in digital systems, communication systems, and
computing to encode information for storage, processing, and
transmission. Various types of binary codes serve different purposes, each
with its own rules and characteristics.

1. Gray Code (Reflected Binary Code):

Gray Code, also known as Reflected Binary Code, is a binary numeral
system where two consecutive values differ by only one bit. It is designed
to minimize errors in digital communication and analog-to-digital
conversion systems.

Properties:

. Adjacent Gray code values differ by only one bit, reducing the
likelihood of errors in transmission or signal conversion.

. The Gray code sequence is not unique; there are multiple possible
sequences of Gray codes for any given number of bits.

Applications:

. Used in rotary encoders, where mechanical imperfections can
cause signal jitter. Gray code ensures that only one bit changes at a time,
minimizing misinterpretation.

. Employed in digital communication systems to reduce the effects
of signal noise and errors during transmission.

Four-bit Gray code

Gray code Decimal equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15
. Example: The 3-bit Gray code sequence IS
000,001,011,010,110,111,101,100. Note that adjacent codes differ
by only one bit.

35

IFT 211 DIGITAL AND LOGIC DESIGN

2. Binary-Coded Decimal (BCD):

Binary-Coded Decimal (BCD) is a binary encoding of decimal
numbers, where each decimal digit is represented by its equivalent
4-bit binary code. It is commonly used in digital systems to
facilitate arithmetic operations involving decimal numbers.
Properties:

. Each decimal digit is represented by a unique 4-bit binary code,
allowing for direct conversion between decimal and binary
representations.

. BCD codes 1010 through 1111 are invalid to avoid ambiguity, as
they do not represent valid decimal digits.

Applications:

. Used in digital displays, such as LED or LCD displays in
calculators, clocks, and electronic instruments, to accurately
represent decimal numbers.

. Employed in financial systems and calculators for precise
arithmetic calculations involving monetary values.
. Example: The BCD representation of the decimal number 25 is

00100101, where each group of four bits represents a decimal digit.
Excess-3 Code (XS-3):

Binary codes for the decimal digits

Decimal (BCD) (Biquinary)

digit 8421 Excess-3 84-2-1 242! 5043210
0 0000 0011 0000 0000 0100001
I 0001 0100 U 0001 0100010
2 0010 0101 0110 0010 0100100
3 0011 0110 0101 0011 0101000
4 0100 0111 0100 0100 0110000
3 0101 1000 1011 1011 1000001
6 0110 1001 1010 1100 1000010
1 0111 1010 1001 1101 1000100
8 1000 1011 1000 [110 1001000
9 1001 1100 111 111 1010000

Excess-3 Code, also known as XS-3 or XS-3-2421 code, is a self-
complementary binary code used to represent decimal digits. Each
decimal digit is represented by its 4-bit binary equivalent, obtained by
adding 3 to the digit and converting the result to binary.

Properties:

. XS-3 is self-complementary, meaning that the code for n is the
complement of the code for 9 — n.

. It simplifies arithmetic operations in digital systems by providing
a direct representation of decimal digits in binary form.

Applications:

36

. Used in digital arithmetic circuits, such as adders and subtractors,
to perform arithmetic operations on decimal numbers in binary
form.

. Employed in calculators and digital counters for accurate
arithmetic calculations and counting operations.

Example: The excess-3 code for the decimal number 7 is obtained by
adding 3 to 7, resulting in 10, which in binary is 1010.

3. ASCIl (American Standard Code for Information
Interchange):

ASCII is a character encoding standard that assigns unique binary codes
to characters, control characters, and symbols commonly used in
computers and communication equipment.

Properties:

. Originally defined with 7 bits, ASCII codes have been extended to
use 8 bits, allowing for the representation of 128 characters.

. ASCIl encodes uppercase and lowercase letters, digits,
punctuation marks, control characters (e.g., newline, carriage
return), and special symbols.

Applications:

. Used in computing, telecommunications, and data transmission to
represent text-based information in digital form.

. Employed in text-based communication protocols, file formats,
and programming languages for character encoding and
manipulation.

Example: The ASCII code for the uppercase letter 'A' is 01000001, while
the ASCII code for the lowercase letter 'a' is 01100001.

American Standard Code for information Interchange [ASCII)

;o by

bybsbisby 000 001 010 o1l 100 101 10 11
0000 NUL DLE SP 0 @ P P
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 o 2 B R b r
0011 ETX DC3 B 3 C S ¢ s
0100 EOT DC4 b) 4 D H & d 1
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F \Y f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN (8 H X h X
1001 HT EM) 9 I Y i y
1010 LF SUB . : I z j z
1011 vT ESC + H K [k {
1100 FF FS 4 < L \ 1 :
1101 CR GS - - M] m }
1110 SO RS N > N A n ~
1111 Sl us / ? 0 - o DEL

37

IFT 211 DIGITAL AND LOGIC DESIGN

Error Detecting Codes

Error detecting codes are techniques used to detect errors that occur
during the transmission or storage of data. These codes introduce
redundancy into the data, allowing receivers to detect whether errors have
occurred.

Properties:

o Error detecting codes add extra bits, called parity bits or
checksums, to the data based on specific algorithms.

. If errors occur during transmission or storage, the received data
will not match the expected data, indicating the presence of errors.

o Error detecting codes can identify the presence of errors but cannot
correct them.

Types:

o Parity Check: Involves adding a single parity bit to the data,
making the total number of bits (including the parity bit) either
even or odd. Commonly used for detecting single-bit errors.

o Checksums: Calculated by summing all the bits or bytes of the
data and appending the result to the data. Checksums can detect
errors caused by multiple-bit errors or burst errors.

Example: Consider the data 1011010 with even parity. The parity bit is
calculated as the XOR (exclusive OR) of all the data bits: 1 0P 1 P
1Pp0P 1P 0=0.So, the transmitted data becomes 10110100. If a
single bit error occurs during transmission, such as changing the last bit
to 1, the parity check at the receiver will detect the error because the
number of ones in the received data (odd) does not match the expected
even parity.

Error Correcting Codes

CTOCcTct O =TrYLy Enrerw e paaaritys
At essSsmcg=— S Mt ssSIcges e
> | OO <>
OO 1 «>» LE S & 8 |
(e S B <» €O ' <5 : |
O3>t 1 2 4«37 2 <>
O R OO > O I O
«<rE<>1 1 1> «»
<3 1O L] O 1O »
£>1 & o €% = 3 S
L3 o> R > E
™M ¥ 1 B> 1 >
BT O L 1 F<> 14 o>
B<>1 3 o E<>1 1 E
1 1O<>» 3 T ROO L.
E 1> L. T 1O |
1 1O «> I3 1> L
211 3 L H-E 1--8N <>

38

Error correcting codes are techniques used to detect and correct errors that
occur during the transmission or storage of data. These codes introduce
redundancy into the data and provide mechanisms for detecting and
correcting errors.

Properties:

) Error correcting codes add additional redundant bits to the data,
allowing receivers to both detect and correct errors.

o These codes are more complex than error detecting codes and
require additional computational overhead.

) Error correcting codes can correct a certain number of errors based

on their design and the amount of redundancy introduced.

Types:

o Hamming Codes: A class of error-correcting codes capable of
correcting single-bit errors and detecting double-bit errors. Hamming
codes add parity bits at specific positions in the data to form code words
that can detect and correct errors.

o BCH Codes: Bose-Chaudhuri-Hocquenghem (BCH) codes are a
class of cyclic error-correcting codes capable of correcting multiple errors
in data. They are widely used in applications where high reliability is
required, such as digital communication and storage systems.

Example: Consider a Hamming code with parity bits. Suppose we have
the data 1101001. Adding parity bits at positions 1, 2, and 4, we get the
code word 01101001. If a single bit error occurs during transmission, the
receiver can use the parity bits to identify and correct the error, ensuring
that the received data matches the original transmitted data.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

: What is the one’s complement of binary 1010?
0101
1111

0101

1001

What is the two’s complement of binary 1010?
0101

A
B
C
D
2.
A.
B. 0110
C
D
A
3.
A

-

: 1001
. 1100
nswer: B
Which code changes only one bit between consecutive values?
. ASCII

39

IFT 211 DIGITAL AND LOGIC DESIGN

Gray Code

BCD

Excess-3

nswer: B

What is the BCD representation of decimal 25?
11001

00100101

1010 0101

0100 0011

nswer: B

Excess-3 code adds to each decimal digit.
2

3

4

5

nswer: B

ASCII uses how many bits originally?

6

7

8

. 10

nswer: B

Which code is self-complementary?
BCD

ASCII

Excess-3

. Gray Code

nswer: C

What is the ASCII code for uppercase 'A'?
01000001

01100001

00100001

11000001

nswer: A

What is the main purpose of error detecting codes?
To compress data

To detect transmission errors

To encrypt data

: To store data

nswer: B

Which code can correct single-bit errors?
Parity

Hamming

ASCII

Gray

COWPEPUOWPCPUONPRPUOWPNPUOTIPOPUOWPIPUOWPADPUOD

Answer: B
Fill in the Blank Questions

1. One’s complement is obtained by all bits. —
inverting

2. Two’s complement is one’s complement plus .—1
3. Gray code differs by only bit between values. — one
4, ASCII originally used bits. — 7

5. Hamming code can correct -bit errors. — single

41

IFT 211 DIGITAL AND LOGIC DESIGN

Unit 3 Digital Logic Gates

Digital electronic circuits operate with voltages of two logic levels
namely Logic Low and Logic High. The range of voltages corresponding
to Logic Low is represented with ‘0’. Similarly, the range of voltages
corresponding to Logic High is represented with ‘1°.

The basic digital electronic circuit that has one or more inputs and single
output is known as Logic gate. Hence, the Logic gates are the building
blocks of any digital system. We can classify these Logic gates into the
following three categories.

. Basic gates

. Universal gates

. Special gates

Now, let us discuss about the Logic gates come under each category one
by one.

Basic Gates

In earlier chapters, we learnt that the Boolean functions can be
represented either in sum of products form or in product of sums form
based on the requirement. So, we can implement these Boolean functions
by using basic gates. The basic gates are AND, OR & NOT gates.

AND gate

An AND gate is a digital circuit that has two or more inputs and produces
an output, which is the logical AND of all those inputs. It is optional to
represent the Logical AND with the symbol “.".

The following table shows the truth table of 2-input AND gate.

Here A, B are the inputs and Y is the output of two input AND gate. If

A B Y=A.B
0 0 0
0 1 0
1 0 0
1 1 1

both inputs are ‘1’°, then only the output, Y is ‘1’. For remaining
combinations of inputs, the output, Y is ‘0’.

42

A B Y=A+B

0 0 0
0 1 1
1 0 1 A.B
1 1 1

The following figure shows the symbol of an AND gate, which is having
two inputs A, B and one output, Y.

This AND gate produces an output Y, which is the logical AND of two
inputs A, B. Similarly, if there are ‘n’ inputs, then the AND gate produces
an output, which is the logical AND of all those inputs. That means, the
output of AND gate will be ‘1°, when all the inputs are ‘1°.

OR gate

An OR gate is a digital circuit that has two or more inputs and produces
an output, which is the logical OR of all those inputs. This logical OR is
represented with the symbol ‘+’.

The following table shows the truth table of 2-input OR gate.

Here A, B are the inputs and Y is the output of two input OR gate. If both
inputs are ‘0’, then only the output, Y is ‘0’. For remaining combinations
of inputs, the output, Y is ‘1°.

The following figure shows the symbol of an OR gate, which is having
two inputs A, B and one output, Y.

This OR gate produces an output Y, which is the logical OR of two inputs

A
Y=A+B

B
A, B. Similarly, if there are ‘n’ inputs, then the OR gate produces an
output, which is the logical OR of all those inputs. That means, the output

of an OR gate will be ‘1°, when at least one of those inputs is ‘1°.

NOT gate

43

IFT 211 DIGITAL AND LOGIC DESIGN

A NOT gate is a digital circuit that has single input and single output. The
output of NOT gate is the logical inversion of input. Hence, the NOT gate
is also called as inverter.

The following table shows the truth table of NOT gate.

A Y = A’

A Y=A

Here A and Y are the input and output of NOT gate respectively. If the
input, A is ‘0’, then the output, Y is ‘1°. Similarly, if the input, A is ‘1°,
then the output, Y is 0’.

The following figure shows the symbol of NOT gate, which is having one
input, A and one output, Y. This NOT gate produces an output Y, which
is the complement of input, A.

Universal gates

NAND & NOR gates are called as universal gates. Because we can
implement any Boolean function, which is in sum of products form by
using NAND gates alone. Similarly, we can implement any Boolean
function, which is in product of sums form by using NOR gates alone.

NAND gate

44

NAND gate is a digital circuit that has two or more inputs and produces
an output, which is the inversion of logical AND of all those inputs. The
following table shows the truth table of 2-input NAND gate Here A, B
are the inputs and Y is the output of two input NAND gate. When both
inputs are ‘1°, the output, Y is ‘0’. If at least one of the input is zero, then
the output, Y is ‘1°. This is just opposite to that of two input AND gate
operation. NAND gate operation is same as that of AND gate followed
by an inverter. That’s why the NAND gate symbol is represented like that.
The following image shows the symbol of NAND gate, which is having
two inputs A, B and one output, Y.

A A —
Y=(A.B)
0 B —
0 1 1
1 0 1
1 1 0

NOR gate

NOR gate is a digital circuit that has two or more inputs and produces an
output, which is the inversion of logical OR of all those inputs.

The following table shows the truth table of 2-input NOR gate

A B Y=A+ B’
0 0 1
0 1 0
1 0 0
1 1 0

Here A, B are the inputs and Y is the output. If both inputs are ‘0’, then
the output, Y is ‘1°. If at least one of the input is ‘1°, then the output, Y is
‘0’. This is just opposite to that of two input OR gate operation.

45

IFT 211 DIGITAL AND LOGIC DESIGN

The following figure shows the symbol of NOR gate, which is having two
inputs A, B and one output, .

A
Y=(A+B)
B

NOR gate operation is same as that of OR gate followed by an inverter.
That’s why the NOR gate symbol is represented like that.
3

Special Gates

Ex-OR & Ex-NOR gates are called as special gates. Because, these two
gates are special cases of OR & NOR gates.

Ex-OR gate

The full form of Ex-OR gate is Exclusive-OR gate. Its function is same
as that of OR gate except for some cases, when the inputs having even
number of ones.

The following table shows the truth table of 2-input Ex-OR gate.

A B Y =A®B
0 0 0
0 1 1
1 0 1
1 1 0

Here A, B are the inputs and Y is the output of two input Ex-OR gate. The
truth table of Ex-OR gate is same as that of OR gate for first three rows.
The only modification is in the fourth row. That means, the output Y is
zero instead of one, when both the inputs are one, since the inputs having
even number of ones.

Therefore, the output of Ex-OR gate is ‘1°, when only one of the two
inputs is ‘1’. And it is zero, when both inputs are same.

Below figure shows the symbol of Ex-OR gate, which is having two
inputs A, B and one output, .

A
Y=A®B

46

Ex-OR gate operation is similar to that of OR gate, except for few
combinations of inputs. That’s why the Ex-OR gate symbol is represented
like that. The output of Ex-OR gate is ‘1’, when odd number of ones
present at the inputs. Hence, the output of Ex-OR gate is also called as
an odd function.

Ex-NOR gate

The full form of Ex-NOR gate is Exclusive-NOR gate. Its function is
same as that of NOR gate except for some cases, when the inputs having
even number of ones. The following table shows the truth table of 2-
input Ex-NOR gate.

Here A, B are the inputs and Y is the output. The truth table of Ex-NOR
gate is same as that of NOR gate for first three rows. The only
modification is in the fourth row. That means, the output is one instead of
zero, when both the inputs are one.

A B Y =A0EB
0 0 1
0 1 0
1 0 0
1 1 1

Therefore, the output of EX-NOR gate is ‘1°, when both inputs are same.
And it is zero, when both the inputs are different.

The following figure shows the symbol of Ex-NOR gate, which is having
two inputs A, B and one output, Y.

A
Y=A0B
B
Ex-NOR gate operation is similar to that of NOR gate, except for few
combinations of inputs. That’s why the Ex-NOR gate symbol is
represented like that. The output of EX-NOR gate is ‘1°, when even

number of ones present at the inputs. Hence, the output of Ex-NOR gate
Is also called as an even function.

47

IFT 211 DIGITAL AND LOGIC DESIGN

From the above truth tables of Ex-OR & Ex-NOR logic gates, we can
easily notice that the Ex-NOR operation is just the logical inversion of
Ex-OR operation.

Basic Theorem and Properties

Basic Laws of Boolean Algebra: Following are the three basic laws of
Boolean Algebra:

. Commutative law
. Associative law
. Distributive law

Commutative Law

If any logical operation of two Boolean variables give the same result
irrespective of the order of those two variables, then that logical operation
is said to be Commutative. The logical OR & logical AND operations of
two Boolean variables x & y are shown below:

X+y=y+X

X.y = Y.X

The symbol ‘+’ indicates logical OR operation. Similarly, the symbol .’
indicates logical AND operation and it is optional to represent.
Commutative law obeys for logical OR & logical AND operations.

Associative Law

If a logical operation of any two Boolean variables is performed first and
then the same operation is performed with the remaining variable gives
the same result, then that logical operation is said to be Associative. The
logical OR & logical AND operations of three Boolean variables x, y &
z are shown below.

x+y)+z=x+(y+2)

(X.y).z =x.(y.2)

Associative law obeys for logical OR & logical AND operations.

Distributive Law

If any logical operation can be distributed to all the terms present in the
Boolean function, then that logical operation is said to be Distributive.
The distribution of logical OR & logical AND operations of three Boolean
variables x, y & z are shown below.

x.(y +2)= (xy) + (x.2)

X+ (y.z)=(x+y).(X+2)

Distributive law obeys for logical OR and logical AND operations.
These are the Basic laws of Boolean algebra. We can verify these laws
easily, by substituting the Boolean variables with ‘0’ or “1°.

48

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

Which logic gate outputs true only when all inputs are true?
OR

AND

NOT

: XOR

nswer: B

What is the output of an OR gate when both inputs are 0?
0

1

Undefined

Same as input

nswer: A

Which gate inverts the input signal?

AND

OR

NOT

NAND

nswer: C

What is the output of a NAND gate when both inputs are 1?
1

0

Undefined

Same as input

nswer: B

Which gate gives a true output only when inputs are different?
AND

OR

XOR

NOR

nswer: C

What is the symbol used to represent a NOT gate?

A

Y

]

@

nswer: C

Which gate is the inverse of the OR gate?

AND

NOR

XOR

NAND

nswer: B

What is the Boolean expression for an AND gate?
A+B

POPUOWPNPUOTIPOPUOTPIPUNTIPAPUODPWPUOIBPNPOOIDE

49

IFT 211 DIGITAL AND LOGIC DESIGN

A-B

ADB

-A

nswer: B

Which gate is considered a universal gate?
XOR

NAND

OR

NOT

nswer: B

0. What is the output of a NOR gate when both inputs are 0?
0

Undefined

1

Same as input

Answer: C

5200m>O>00W

COow>

Fill in the Blank Questions

1. The gate outputs true only when all inputs are true.
— AND

2. The gate inverts the input signal. — NOT

3. A gate gives true output only when inputs differ. —
XOR

4, The Boolean expression for an AND gate is .—A-B
5. The gate 1s known as a universal gate. — NAND

50

Unit 4: Boolean Algebra

A Boolean algebra is a closed algebraic system containing a set K of two
or more elements and the two operators - and + which refer to logical
AND and logical OR

o X+0=X

x-0=0

x+1=1

x-1=1

X+ X=X

X X=X

Xx+x =X

x-x=0

X+y=y+X

Xy = yX

X+t(y+z)=(x+ty)+z

x (yz) = (xy) z

X(y+z)=xy+xz

X+yz=(X+y)(x+2)

(X+ty)y=x"y’

(xy) =x"+y’

x’) =x

Theorems of Boolean Algebra

The following two theorems are used in Boolean algebra.

. Duality theorem

. DeMorgan’s theorem

Duality Theorem This theorem states that the dual of the Boolean
function is obtained by interchanging the logical AND operator with
logical OR operator and zeros with ones. For every Boolean function,
there will be a corresponding Dual function. Let us make the Boolean
equations relations that we discussed in the section of Boolean postulates
and basic laws into two groups. The following table shows these two
groups

DeMorgan’s Theorem

This theorem is useful in finding the complement of Boolean function.
It states that the complement of logical OR of at least two Boolean
variables is equal to the logical AND of each complemented variable.
DeMorgan’s theorem with 2 Boolean variables x and y can be represented
as

« () =xy

The dual of the above Boolean function is

e (xyy=x'ty

51

IFT 211 DIGITAL AND LOGIC DESIGN

Therefore, the complement of logical AND of two Boolean variables is
equal to the logical OR of each complemented variable. Similarly, we can
apply DeMorgan’s theorem for more than 2 Boolean variables also.

Groupl Group?2

X+0=x X.1=x

x+1=1 x.0=0

X+X=X XX =%

x+x =1 x.x'=0

X+y=y+x X.y = Y.X
X+yt+z=r+y+z XY.z2=2.92
XY+z=xy+xz X+yz=rtyrt+z

Example

Let us find the complement of the Boolean function, f=p’q+ pq’.
The complement of Boolean function is f* = p'q + pq'.

Step 1 — Use DeMorgan’s theorem, x+y’ = x’.y’.

i f" — plq’.pqll

Step 2 — Use DeMorgan’s theorem, x.y’ =x’ +y’
=>F={p"+q}.{p’+q"}

Step3 — Use the Boolean postulate, x"’=x.

=>f={p+q}.{p’+q}

= =pp’+pq+p’q +qq’

Step 4 — Use the Boolean postulate, xx’=0.
=>f=0+pq+p’q +0

= f=pq+p’q

Therefore, the complement of Boolean function, p’q + pq’ is pq + p’q’.

52

Unit 5: Canonical & Standard Forms

We will get four Boolean product terms by combining two variables x and
y with logical AND operation. These Boolean product terms are called
as min terms or standard product terms. The min terms are x’y’, X'y,
xy’ and xy.

Similarly, we will get four Boolean sum terms by combining two
variables x and y with logical OR operation. These Boolean sum terms
are called as Max terms or standard sum terms. The Max terms are x +
y, X +y’,x’ +yand x’ +y’. The following table shows the representation
of min terms and MAX terms for 2 variables.

X y Min terms Max terms
0 0 mp=xYy’ Mo=x +y
0 1 m1=xYy Mi=x+Yy’
1 0 m)=xy’ My=x"+y
1 | M3=Xy M3=x"+y'

If the binary variable is ‘0’, then it is represented as complement of
variable in min term and as the variable itself in Max term. Similarly, if
the binary variable is ‘1°, then it is represented as complement of variable
in Max term and as the variable itself in min term.

From the above table, we can easily notice that min terms and Max terms
are complement of each other. If there are ‘n” Boolean variables, then
there will be 2" min terms and 2" Max terms.

Canonical SoP and PoS forms

A truth table consists of a set of inputs and outputs. If there are ‘n’ input
variables, then there will be 2" possible combinations with zeros and ones.
So the value of each output variable depends on the combination of input
variables. So, each output variable will have ‘1’ for some combination of
input variables and ‘0’ for some other combination of input variables.
Therefore, we can express each output variable in following two ways.

. Canonical SoP form

. Canonical PoS form

53

IFT 211 DIGITAL AND LOGIC DESIGN

Canonical SoP form

Canonical SoP form means Canonical Sum of Products form. In this form,
each product term contains all literals. So, these product terms are nothing
but the min terms. Hence, canonical SoP form is also called as sum of
min terms form.

First, identify the min terms for which, the output variable is one and then
do the logical OR of those min terms in order to get the Boolean
expression function corresponding to that output variable. This Boolean
function will be in the form of sum of min terms.

Follow the same procedure for other output variables also, if there is more
than one output variable.

Example

Consider the following truth table.

Here, the outputfis ‘1’ for four combinations of inputs. The
corresponding min terms are p’qr, pq’t, pqr’, pqr. By doing logical OR of

Inputs Output
p q r f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 |
1 1 1 1

these four min terms, we will get the Boolean function of output f.
Therefore, the Boolean function of output is, f =p’qr + pq’r + pqr’ + pqr.
This is the canonical SoP form of output, f. We can also represent this
function in following two notations.

F=m3s+ms+ meg+ my

f=>m(3,5,6,7)

In one equation, we represented the function as sum of respective min
terms. In other equation, we used the symbol for summation of those min
terms.

54

Canonical PoS form

Canonical PoS form means Canonical Product of Sums form. In this form,
each sum term contains all literals. So, these sum terms are nothing but
the Max terms. Hence, canonical PoS form is also called as product of
Max terms form.

First, identify the Max terms for which, the output variable is zero and
then do the logical AND of those Max terms in order to get the Boolean
expression function corresponding to that output variable. This Boolean
function will be in the form of product of Max terms.

Follow the same procedure for other output variables also, if there is more
than one output variable.

Example

Consider the same truth table of previous example. Here, the output f is
‘0’ for four combinations of inputs. The corresponding Max terms are p
+q+r,ptq+r,ptq +r,p +q+r Bydoing logical AND of these
four Max terms, we will get the Boolean function of output f.

Therefore, the Boolean function of outputis,f=p+q-+rp+q+r'p+q’
+r.p’ + g + r. This is the canonical PoS form of output, f. We can also
represent this function in following two notations.

F = Mo.M1.M2.Mgy

f=[IM(O,1,2,4)

In one equation, we represented the function as product of respective Max
terms. In other equation, we used the symbol for multiplication of those
Max terms.

The Boolean function, f=p+q+rp+q+r.p+q +rp +q+risthe
dual of the Boolean function, f=p’qr + pq’r + pqr’ + pqr.

Therefore, both canonical SoP and canonical PoS forms are Dual to each
other. Functionally, these two forms are same. Based on the requirement,
we can use one of these two forms.

Standard SoP and PoS forms

We discussed two canonical forms of representing the Boolean outputs.
Similarly, there are two standard forms of representing the Boolean
outputs. These are the simplified version of canonical forms.

. Standard SoP form

. Standard PoS form

We will discuss about Logic gates in later chapters. The
main advantage of standard forms is that the number of inputs applied to
logic gates can be minimized. Sometimes, there will be reduction in the
total number of logic gates required.

Standard SoP form

Standard SoP form means Standard Sum of Products form. In this form,
each product term need not contain all literals. So, the product terms may

55

IFT 211 DIGITAL AND LOGIC DESIGN

or may not be the min terms. Therefore, the Standard SoP form is the
simplified form of canonical SoP form.
We will get Standard SoP form of output variable in two steps.

. Get the canonical SoP form of output variable
. Simplify the above Boolean function, which is in canonical SoP
form.

Follow the same procedure for other output variables also, if there is more
than one output variable. Sometimes, it may not possible to simplify the
canonical SoP form. In that case, both canonical and standard SoP forms
are same.

Example

Convert the following Boolean function into Standard SoP form.
Convert the following Boolean function into Standard SoP form.
F=p’qr+pq’r+pqr’ + pqr

The given Boolean function is in canonical SoP form. Now, we have to
simplify this Boolean function in order to get standard SoP form.

Step 1 — Use the Boolean postulate, x + x = x. That means, the Logical
OR operation with any Boolean variable ‘n’ times will be equal to the
same variable. So, we can write the last term pgr two more times.

= f=p’qr+pq’r + pqr’ + pqr + pqr + pqr

Step 2 — Use Distributive law for 1tand 4™ terms, 2"¢and 5" terms,
3 and 6™ terms.

=>f=qrp'+p+prq +q+pqr'+r

Step 3 — Use Boolean postulate, x + x” = 1 for simplifying the terms
present in each parenthesis.

=>f=qrl +prl +pql

Step 4 — Use Boolean postulate, x.1 = x for simplifying above three
terms.

=>f=qr+pr+pg

=f=pq+aqr+pr

This is the simplified Boolean function. Therefore, the standard SoP
form corresponding to given canonical SoP form is f = pq + qr + pr
Standard PoS form

Standard PoS form means Standard Product of Sums form. In this form,
each sum term need not contain all literals. So, the sum terms may or may
not be the Max terms. Therefore, the Standard PoS form is the simplified
form of canonical PoS form.

We will get Standard PoS form of output variable in two steps.

. Get the canonical PoS form of output variable
. Simplify the above Boolean function, which is in canonical PoS
form.

Follow the same procedure for other output variables also, if there is more
than one output variable. Sometimes, it may not possible to simplify the
canonical PoS form. In that case, both canonical and standard PoS forms
are same.

56

Tutor Marked Assignment

1. What is the logical expression for Y = A + A"'B?

2. What is the octal equivalent of (F3B1)16?

3. Minimum number of 2 input NOR Gates required to realize f = C
+ AB is?

4, Realize W = AB + CD + EF + GH using 2 input NAND gates.

5. Convert (312)8 into decimal

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

What is Boolean algebra primarily used for?
Designing mechanical systems

Simplifying logical expressions

Calculating interest rates

Programming in Python

nswer: B

Which symbol represents the AND operation in Boolean algebra?
D

#

nswer: A

What is the identity element for the OR operation?
0

1

A

: -A

nswer: B

What is the result of A + 0 in Boolean algebra?
0

A

1

-A

nswer: B

Which law states that A + A = A?

Identity Law

Idempotent Law

Complement Law

Distributive Law

nswer: B

What is the complement of 1 in Boolean algebra?
1

0

A

: -A

nswer: B

PUOWPOPUOWMPUPUOWIPAPUORPRPUOWPNPOOTBE

57

IFT 211 DIGITAL AND LOGIC DESIGN

7. Which law is represented by A- (B+C)=A-B+A - C?
A Associative Law

B. De Morgan’s Law

C. Distributive Law

D. Absorption Law

Answer: C

8. What does De Morgan’s first law state?

A. -(A+B)=-A--B

B. —I(A-B):—IA-—IB

C. A+A=A

D. A-1=A

Answer: A

9. Which of the following is a valid simplification using Boolean
laws?

A. A+A=1

B. A-0=0

C. A-A=0

D. A+1=0

Answer: B

10. What is the result of A - 1 in Boolean algebra?
A. 0

B. A

C. 1

D. -A

Answer: B

Fill in the Blank Questions

1. Boolean algebra is used to logical expressions. —
simplify

2. The symbol for the AND operation is Lo

3. The law that states A + A = A is called the law. —
idempotent

4, De Morgan’s first law states that (A + B) = .— —A
. =B

5. The result of A - 0 is .—0

58

Module 2 Minimization Techniques

Unit 1 Karnaugh Map Method
Unit 2 Manipulation and Minimisation
Unit 3 Physical Properties of Gates

Unit 1 The Karnaugh Map Method

In previous lecture, we have simplified the Boolean functions using
Boolean postulates and theorems. It is a time consuming process and we
have to re-write the simplified expressions after each step.

To overcome this difficulty, Karnaugh introduced a method for
simplification of Boolean functions in an easy way. This method is known
as Karnaugh map method or K-map method. It is a graphical method,
which consists of 2" cells for ‘n’ variables. The adjacent cells are differed
only in single bit position.

K-Maps for 2 to 5 Variables

K-Map method is most suitable for minimizing Boolean functions of 2
variables to 5 variables. Now, let us discuss about the K-Maps for 2 to 5
variables one by one.

2 Variable K-Map

The number of cells in 2 variable K-map is four, since the number of
variables is two. The following figure shows 2 variable K-Map.

Z
Y 0 1
YZ
0 Mg | My 00 01 11 10
1 mo| ma or Mg | My | m3| My
. There is only one possibility of grouping 4 adjacent min terms.
. The possible combinations of grouping 2 adjacent min terms are

{(mo, my), (M2, m3), (Mo, m2) and (M1, mz3)}.

3 Variable K-Map

YZ

X 00 01 11 10

0 Mg | My M3 My

1 m 4 m 5 m 7 m 6

59

IFT 211 DIGITAL AND LOGIC DESIGN

The number of cells in 3 variable K-map is eight, since the number of
variables is three. The following figure shows 3 variable K-Map.

. There is only one possibility of grouping 8 adjacent min terms.

. The possible combinations of grouping 4 adjacent min terms are
{(mo, m1, Mz, mz), (M4, Ms, M7, Me), (Mo, M1, M4, Ms), (M1, M3, Ms, M7),
(ms, m2, m7, me) and (mz, Mo, Me, Ma)}.

. The possible combinations of grouping 2 adjacent min terms are
{(mo, M), (M1, m3), (M3, M2), (M2, Mo), (M4, Ms), (Ms, M7), (M7, Ms), (Me,
m4), (Mo, M4), (M1, Ms), (M3, M7) and (M2, me)}.

. If x=0, then 3 variable K-map becomes 2 variable K-map.

4 Variable K-Map
The number of cells in 4 variable K-map is sixteen, since the number of
variables is four. The following figure shows 4 variable K-Map.

YZ
wx N_ 00 01 11 10

ool m 0 m 1 m 3 m 2

01 m 4 m 5 m-| M 6

11 Myl My3|Myg|Myg

10 | mg | Mg [My4] Mg

. There is only one possibility of grouping 16 adjacent min terms.

. Let Ry, R2, Rz and R4 represents the min terms of first row, second
row, third row and fourth row respectively. Similarly, C1, C2, Csand
C4 represents the min terms of first column, second column, third column
and fourth column respectively. The possible combinations of grouping 8
adjacent min terms are {(R1, R2), (R2, R3), (Rs, R4), (R4, R1), (C1, C2), (C,
Cs), (Cs, Ca), (C4, Co)}.

. If w=0, then 4 variable K-map becomes 3 variable K-map.

5 Variable K-Map

The number of cells in 5 variable K-map is thirty-two, since the number
of variables is 5. The following figure shows 5 variable K-Map.

60

There is only one possibility of grouping 32 adjacent min terms.

V=0 V=1
WX Iz 00 01 11 10 WX E 00 01 11 10
00| Mg | mq| m3f my 00 |Myg| M17|M1g] Mg
01 | mg| ms| mo| mg 01 |Mayg| Myg|Masl My,
11 [mypMy3|Mys|Myg 11 |mjyg|Mog|Mm3q| M3y
10 | mg | mg |Mqq] Myg 10 [|Myg|Mys|Moz| Mog

There are two possibilities of grouping 16 adjacent min terms. i.e.,

grouping of min terms from mo to mys and mye to Ma;.

If v=0, then 5 variable K-map becomes 4 variable K-map.

In the above all K-maps, we used exclusively the min terms notation.
Similarly, you can use exclusively the Max terms notation.

Minimization of Boolean Functions using K-Maps

If we consider the combination of inputs for which the Boolean function
is ‘1°, then we will get the Boolean function, which is in standard sum
of products form after simplifying the K-map.

Similarly, if we consider the combination of inputs for which the Boolean
function is ‘0°, then we will get the Boolean function, which is
in standard product of sums form after simplifying the K-map.

Follow these rules for simplifying K-maps in order to get standard sum
of products form.

Select the respective K-map based on the number of variables
present in the Boolean function.

If the Boolean function is given as sum of min terms form, then
place the ones at respective min term cells in the K-map. If the
Boolean function is given as sum of products form, then place the
ones in all possible cells of K-map for which the given product
terms are valid.

Check for the possibilities of grouping maximum number of
adjacent ones. It should be powers of two. Start from highest power
of two and upto least power of two. Highest power is equal to the
number of variables considered in K-map and least power is zero.
Each grouping will give either a literal or one product term. It is
known as prime implicant. The prime implicant is said to
be essential prime implicant, if atleast single ‘1’ is not covered
with any other groupings but only that grouping covers.

Note down all the prime implicants and essential prime implicants.
The simplified Boolean function contains all essential prime
implicants and only the required prime implicants.

61

IFT 211 DIGITAL AND LOGIC DESIGN

Note 1 — If outputs are not defined for some combination of inputs, then
those output values will be represented with don’t care symbol ‘x’. That
means, we can consider them as either ‘0’ or ‘1°.

Note 2 — If don’t care terms also present, then place don’t cares ‘x’ in the
respective cells of K-map. Consider only the don’t cares ‘x’ that are
helpful for grouping maximum number of adjacent ones. In those cases,
treat the don’t care value as “1°.

Here, 1s are placed in the following cells of K-map.

WX = OO 01 11 10

00 1

01 1

11 1 1

10 1 1 1 1
. The cells, which are common to the intersection of Row 4 and
columns 1 & 2 are corresponding to the product term, WX’Y’.
. The cells, which are common to the intersection of Rows 3 & 4
and columns 3 & 4 are corresponding to the product term, WY.
. The cells, which are common to the intersection of Rows 1 & 2

and column 4 are corresponding to the product term, W’YZ’.

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent
ones. There are three possibilities of grouping 4 adjacent ones. After these
three groupings, there is no single one left as ungrouped. So, we no need
to check for grouping of 2 adjacent ones. The 4 variable K-map with
these three groupings is shown in the following figure.

Here, we got three prime implicants WX’, WY & YZ’. All these prime

WX JZ 00 01 11 10
00 1 R YZ'
01 1
11 1 1 Psiwcsiess wY
W= 10|11 1 111

implicants are essential because of following reasons.
. Two ones (mg & mog) of fourth row grouping are not covered by
any other groupings. Only fourth row grouping covers those two ones.

62

. Single one (m1s) of square shape grouping is not covered by any
other groupings. Only the square shape grouping covers that one.

. Two ones (M2 & meg) of fourth column grouping are not covered
by any other groupings. Only fourth column grouping covers those two
ones.

Therefore, the simplified Boolean function is

f=WX’+WY+YZ’

Follow these rules for simplifying K-maps in order to get standard
product of sums form.

. Select the respective K-map based on the number of variables
present in the Boolean function.
. If the Boolean function is given as product of Max terms form,

then place the zeroes at respective Max term cells in the K-map. If
the Boolean function is given as product of sums form, then place
the zeroes in all possible cells of K-map for which the given sum
terms are valid.

. Check for the possibilities of grouping maximum number of
adjacent zeroes. It should be powers of two. Start from highest
power of two and upto least power of two. Highest power is equal
to the number of variables considered in K-map and least power is
zero.

. Each grouping will give either a literal or one sum term. It is known
as prime implicant. The prime implicant is said to be essential
prime implicant, if atleast single ‘0’ is not covered with any other
groupings but only that grouping covers.

. Note down all the prime implicants and essential prime implicants.
The simplified Boolean function contains all essential prime
implicants and only the required prime implicants.

Note — If don’t care terms also present, then place don’t cares ‘x’ in the

respective cells of K-map. Consider only the don’t cares ‘x’ that are

helpful for grouping maximum number of adjacent zeroes. In those cases,

treat the don’t care value as ‘0’.

Example

Let us simplify the following Boolean function, f (X,Y,Z) =[] M (0, 1,

2, 4) using K-map.

The given Boolean function is in product of Max terms form. It is having

3 variables X, Y & Z. So, we require 3 variable K-map. The given Max

YZ

% 00 01 11 10
o |o]o
1 | o

63

IFT 211 DIGITAL AND LOGIC DESIGN

terms are Mo, M1, M2 & M. The 3variable K-map with zeroes
corresponding to the given Max terms is shown in the following figure.
There are no possibilities of grouping either 8 adjacent zeroes or 4
adjacent zeroes. There are three possibilities of grouping 2 adjacent
zeroes. After these three groupings, there is no single zero left as
ungrouped. The 3 variable K-map with these three groupings is shown
in the following figure.

X+Y
X X 00 ‘01 11 10
o |IETTo B [
— "2+ X
1 ||o
Y+Z

Here, we got three prime implicants X + Y, Y + Z & Z + X. All these
prime implicants are essential because one zero in each grouping is not
covered by any other groupings except with their individual groupings.
Therefore, the simplified Boolean function is

f=X+YY+ZZ+X

In this way, we can easily simplify the Boolean functions up to 5 variables
using K-map method. For more than 5 variables, it is difficult to simplify
the functions using K-Maps. Because, the number of cells in K-map
gets doubled by including a new variable.

Due to this checking and grouping of adjacent ones Minterms or adjacent
zeros Maxterms will be complicated.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary purpose of the Karnaugh Map (K-map)
method?

A. To design logic gates

B. To simplify Boolean functions

C. To convert decimal to binary

D. To build truth tables
Answer: B
Explanation: K-map is a graphical method used to simplify Boolean
expressions efficiently.

2. How many cells are in a 3-variable K-map?

A 4

64

B. 8

C. 16

D. 32

Answer: B

Explanation: A 3-variable K-map contains 23 = 8 cells.
3. Which grouping size is NOT valid in a K-map simplification?
A. 1

B. 2
C. 3
D. 4
Answer: C

Explanation: Groupings must be in powers of two: 1, 2, 4, 8, etc.

4, What is a prime implicant in K-map terminology?

A. A variable in the function

B. A group of adjacent zeros

C. A product term from a grouping

D. A minimized truth table
Answer: C
Explanation: Each valid grouping in a K-map yields a product term
called a prime implicant.

5. What makes a prime implicant essential?

A. It contains only one variable

B. It covers at least one ‘1’ not covered by any other group

C. It is the largest group possible

D. It appears in every row
Answer: B
Explanation: Essential prime implicants uniquely cover at least one ‘1’
in the K-map.

6. What does a don’t care condition (‘x’) represent in a K-map?

A. A required ‘0’

B. A required ‘1’

C. An undefined output that can be treated as either ‘0’ or ‘1’

D. A redundant variable
Answer: C
Explanation: Don’t care conditions can be used to optimize groupings
by treating them as ‘0’ or ‘1°.

7. What is the result of simplifying a K-map using min terms?
A Product of sums

B. Sum of products

C. Truth table

D. Binary code
Answer: B
Explanation: Grouping ‘1’s in a K-map leads to a simplified sum of
products expression.

8. How many cells are in a 5-variable K-map?

A. 16

65

IFT 211 DIGITAL AND LOGIC DESIGN

B. 32

C. 64

D. 8

Answer: B

Explanation: A 5-variable K-map contains 2° = 32 cells.
0. Which of the following is a valid grouping in a 4-variable K-

map?

A. (m0, m1, m2)

B. (R1, R2)

C. (C1,C2,C3)

D. (mO, m4, m8, m12, m1)
Answer: B

Explanation: Rows R1 and R2 represent valid groupings of 8 adjacent
min terms.

10. What is the simplified Boolean function from the example
given in the unit?

A. WX +WY +YZ

B. WX +WY +YZ’

C. wWXY’ '+ WY +WYZ’

D. WX + WY + YZ’
Answer: B
Explanation: The final simplified function from the example is f= WX’
+WY+YZ.

Fill in the Blank Questions

1. A K-map with 4 wvariables contains cells.
Answer: 16

2. Groupings in a K-map must be in powers of

Answer: two

3. A prime implicant covers at least one ‘1’ not covered
by any other grouping.
Answer: essential

4, Don’t care conditions are represented by the symbol

in a K-map.
Answer: x

5. The simplified Boolean function from the product of Max terms
example is

Answer: X+Y - Y+Z -Z+X

66

Unit 2 Manipulation and Minimization

What is Minimization?

* In mathematics, expressions are simplified for a
number of reasons, for instance simpler expression
are easier to understand and easier to write down,
they are also less prone to error in interpretation
but, most importantly, simplified expressions are
usually more efficient and effective when
implemented in practice.

* A Boolean expression is composed
of variables and terms. The simplification of
Boolean expressions can lead to more effective
computer programs, algorithms and circuits.

Algebraic Manipulation of Boolean Expressions

* We can now start doing some simplifications

Tabular Method of Minimization

=X (y +y)+xyz[Distributive: X'y +x'y=x"(y" +y)]

=x ol+xyz [complement: x' +x=1]

=X +XVZ [identitv: X" o1 = x" 1

= (* The tabular method which is also known as the

=1 Quine-McCluskey method is particularly useful

=; when minimising functions having a large number of
variables, e.g. The six-variable functions. Computer
programs have been developed employing this
algorithm.

* Minimisation can be achieved by a
number of methods, three well known
methods are:

1. Algebraic Manipulation of Boolean
Expressions

2. Tabular Method of Minimization

3. Karnaugh Maps

* Here are two

IFT 211

different but

equivalent o [

circuits.

In general the

: -
one with fewer]

gates is
“better”:

=~ It costs less m

] Do

to build
= It requires
less power

- But we had to
do some work

to find the 1 H

second form

—

DIGITAL AND LOGIC DESIGN

oY G ,
))XY +xyz +XYy

/bx' +y2

* The method reduces a function in standard sum of
products form to a set of prime implicants from
which as many variables are eliminated as possible.

* These prime implicants are then examined to see if

some are redundant.

* We will show how the Quine-McCluskey method can
be used to find a minimal expansion

equivalent to: xyz +x¥yz +Xyz +X¥yz + X ¥V Z.

* We will represent the minterms in this expansion
by bit strings. The first bit will be 1 if x occurs and
O if X occurs. The second bit will be 1 if y occurs
and O if y occurs. The third bit will be 1 if z occurs

and O if z occurs.

* We then group these terms according to the
number of 1s in the corresponding bit strings. This
information is shown in Table 1.

68

IFT 211 DIGITAL AND LOGIC DESIGN

TABLE 1
Minterm Bit String Number of Is
XyzZ 111 3
xyz 101 2
xyz 011 2
xyz 001 1
xyz 000 8]

* Step It
- Minterms that can be combined are those that differ in
exactly one literal. Hence, two terms that can be
combined differ by exactly one in the number of 1s in the
bit strings that represent them.

= When two minterms are combined into a product, this
product contains two literals. A product in two literals is
represented using a dash to denote the variable that
does not occur.

- For instance, the minterms xyz and X yz, represented by
bit strings 101 and 001, can be combined into yz,
represented by the string _01.

= All pairs of minterms that can be combined and the
product formed from these combinations are shown in

Table 2.
TABLE 2
Step 1
Term Bit String Term String
l xyz 111 (1,2) X2 I-1
2 Xyz 101 (1,3) yZ -1
3 XYz 011 2.4) ¥2 -01
4 XYz 001 (3,4) X2 0-1]
5)7 000 45 xy 00-

69

IFT 211 DIGITAL AND LOGIC DESIGN

* Step 2:
= Next, all pairs of products of two literals that can be
combined are combined into one literal. Two such
products can be combined if they contain literals for the
same two variables, and literals for only one of the two
variables differ.
= In terms of the strings representing the products, these
strings must have a dash in the same position and must
differ in exactly one of the other two slots.
- We can combine the products yz and yz, represented by
the strings _11and _01, into z, represented by the string
1

- We show all the combinations of terms that can be
formed in this way in Table 3.

TABLE 3

Step 1 Step 2

Term String Term String
(1,2) Xz I-1 (12,34 Z --1
(1.3) yz -1
(24) 74 -0l
(34) xZ 0-1
(4.5) Xy 00-

* Step 3
= In Table 3 we also indicate which terms have been used
to form products with fewer literals; these terms will not
be needed in a minimal expansion.

- The next step is to identify a minimal set of products
needed fo represent the Boolean function.

- We begin with all those products that were not used to
construct products with fewer literals.

70

- Next, we form Table 4, which has a row for each
candidate product formed by combining original terms,

and a column for each original ferm; and we put an X ina

position if the original ferm in the sum-of-products
expansion was used to form this candidate product.

T.

ABLE 3
(Step 3)

Xyz

Xyz

Xyz

X

X

- In this case, we say that the candidate product covers
the original minterm. We need to include at least one
product that covers each of the original minterms.

- Consequently, whenever there is only one X in a column in
the table, the product corresponding to the row this X is
in must be used.

- From Table 4 we see that both z and Xy are needed.

- Hence, the final answer is z + X y.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)
Why is it important to simplify Boolean expressions?
To increase the number of variables

1.

A.
B.
C.
D.

To make expressions harder to interpret
To improve efficiency and reduce errors
convert

To

Answer:
Explanation: Simplified expressions are easier to understand, less error-

prone, and more efficient in practical applications.

2.

A.
B.
C.

them

into

format
C

decimal

Which of the following is NOT a method for minimizing
Boolean expressions?
Karnaugh Maps
Tabular Method
Algebraic Manipulation

71

IFT 211 DIGITAL AND LOGIC DESIGN

D. Binary Expansion
Answer: D
Explanation: Binary expansion is not a recognized method for Boolean
minimization.

3. What does the Tabular Method primarily use to simplify
Boolean expressions?

A. Truth tables

B. Karnaugh maps

C. Prime implicant tables

D. ASCII codes
Answer: C
Explanation: The Tabular Method uses prime implicant tables to identify
minimal expressions.

4, In the Tabular Method, what does an 'X' in a table cell
typically indicate?

A A variable is missing

B. A product term covers a minterm

C. A logic gate is required

D. A contradiction in logic
Answer: B
Explanation: An 'X' marks that a candidate product covers a specific
minterm.

5. What is the goal of identifying essential prime implicants in the
Tabular Method?

A. To increase the number of terms

B. To ensure all minterms are covered

C. To eliminate all variables

D. To convert expressions to hexadecimal
Answer: B
Explanation: Essential prime implicants are necessary to cover minterms
not covered by other groupings.

6. Which method is most suitable for simplifying Boolean
expressions with more than 5 variables?

A. Karnaugh Map

B. Tabular Method

C. Algebraic Manipulation

D. ASCII Encoding
Answer: B
Explanation: The Tabular Method is preferred for expressions with more
than 5 variables due to complexity.

7. What is the final simplified Boolean expression from the
example in the tabular method?

A. X+y

B. X*y

C. X-y

72

D. X / y

Answer: B
Explanation: The final answer derived from the table is x * y.

8. What does a candidate product represent in the Tabular
Method?

A. Atruth table row

B. A minimized literal

C. A combination of original terms

D. A binary digit
Answer: C
Explanation: Candidate products are formed by combining original
terms to simplify expressions.

9. What is the main challenge in parallelizing Boolean
expressions for minimization?

A. Lack of variables

B. Race conditions and deadlocks

C. Excessive memory usage

D. Slow input devices
Answer: B
Explanation: Concurrency introduces coding errors like race conditions
and deadlocks.

10. Which of the following is a benefit of using the Tabular Method
over Karnaugh Maps?

A. Easier for small variable sets

B. Better for visual grouping

C. Suitable for more than 5 variables

D. Requires no computation
Answer: C

Explanation: The Tabular Method handles large variable sets more
effectively than Karnaugh Maps.

Fill in the Blank Questions

1. Boolean expressions are simplified to improve and
reduce errors.
Answer: efficiency

2. The Tabular Method uses implicants to cover all
minterms.

Answer: prime

3. An 'X" in the table indicates that a product covers a
minterm.

Answer: candidate

4, The final simplified expression from the example is

Answer: x *y

5. The Tabular Method is preferred over Karnaugh Maps when there
are more than variables.
Answer: five

73

IFT 211 DIGITAL AND LOGIC DESIGN

Unit 3 Physical properties of gates

Voltage Levels
< Logic 1 is a range of voltage values

<~ NOT just a single voltage value Logic 1

<+ Logic 0 is also a range of voltages Valtdge Rangs

<> Not just zero volt Undafiasd
< The voltage range between logic 0 Voltage
; Range
and 1 is undefined
< Digital signals are not allowed to use Logic O

Voltage Range

voltage values in the undefined range

Timing Diagram

« Shows the logic values of signals in a circuit versus time
< Waveform: the shape of a signal over a period of time

« Example: timing diagram of an AND gate (with zero delay)

: 1 1 = &
030 E y

y| 1 1 0
AND gate
+| 8 ; 0 0 0 1 0 with zero delay

> time

74

Gate Delay
% A change in the inputs of a gate causes a change in its outputs

“+» However, the change in the output signal is not instantaneous

* There is a small delay between an input signal change and an
output signal change, called gate delay

A

A x—}_
y1§1o§o§o 151 »

Gate delay =1

> time

Propagation Delay in a Circuit
* In a given circuit, each gate has a delay

* The circuit has a propagation delay between inputs and outputs
*» The propagation delay is computed along the critical path

* To compute the propagation delay, start at the inputs:

1. Delay at each gate output = Maximum input delay + Gate delay

2. Propagation delay of a circuit = maximum delay at any output

Computing the Maximum Circuit Delay

75

IFT 211 DIGITAL AND LOGIC DESIGN

% Consider the following circuit with 8 inputs and 2 outputs
< Delay of a 2-input AND gate = 2 ns

* Delay of a 3-input AND gate = 3 ns

« Delay of a 2-input OR gate = 2 ns

« Delay of a 3-input OR gate = 3 ns

D
1

3ns

Compute the
Maximum
Circuit Delay

Rise-Time and Fall-Time
+* In logic simulators, a waveform is drawn as an ideal wave

% The change from 0 to 1 (or from 1 to 0) is instantaneous
+* In reality, a signal has a non-zero rise-time and fall-time

< Time taken to change from 10% to 90% of High voltage (and vice versa)

Ideal Wave
90% /’ —\\ / s
s0% / \ / Real Wave
= SN
g .
Rise Time Fall Time Rise Time
Fan-In

76

Fan-Out

+ In digital circuits, it is common for the output of one gate (called
driver gate) to be connect to the inputs of several load gates

% The fan-out of a gate is the number of gate inputs it can feed
% There is a limit on the maximum fan-out of a gate

The output of a driver gate can supply

a limited amount of current. Driver R
Gate

Each input of a load gate consumes a _}
certain amount of current. 1
Fan-Out= 2

NG
Load Gates

) -
s

Therefore, the driver gate can only

~

feed a limited number of load gates.
* The fan-in is the number of inputs to a gate

< Example: a 3-input AND gate has a Fan-in of 3
% Logic gates with a large fan-in tend to be slow
% Increasing the Fan-in of a gate increases the gate delay

+ For example, a 3-input AND gate has a higher delay than a
2-input AND gate made with the same technology

% Using logic gates with higher fan-in is useful when reducing

the depth (number of levels) of a logic circuit

77

IFT 211 DIGITAL AND LOGIC DESIGN

Increasing the Fan-Out with a Buffer Gate
< Buffer Gate Buffer Gate

< Output f = Input x x | > f =y

+ Buffer provides drive capability

< Used to amplify an input signal D—\
< High current output Buffer 2_

Gate >
4 Increases the Fan-Out —D_[>__ o .

< Buffer gate increases the
] el Fan-Out=N |N
propagation delay of a circuit)
oy

Tutor Marked Assignment

1. Find Product of Sum (POS) form of f (a, b, ¢, d) =M (1, 4, 6, 9)
2. Simplify f(a,b,c)=> m (0, 2,5, 7)

3. Minimize the Boolean function F(A, B, C,D)=Xm (0, 1, 2, 5, 7,
8,9, 10, 13, 15)

4, Minimize the Boolean function F(A, B, C,D)=Xm (1, 3,4, 6, 8,
9,11, 13, 15)+Xd (0, 2, 14)

5. Minimize the Boolean function F(A, B, C, D) =X m (0, 2, 8, 10,
14)+2d (5, 15)

Load Gates

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What does gate delay refer to in digital circuits?

A. The time a signal takes to travel through a wire

B. The time between input change and output response in a gate

C. The time required to power on a circuit

D. The time to store data in memory
Answer: B
Explanation: Gate delay is the time it takes for a gate’s output to respond
after its input changes.

2. What is propagation delay in a digital circuit?

A. The delay caused by the power supply

B. The delay between input and output across the entire circuit

C. The delay in signal transmission through a cable

D. The delay in memory access
Answer: B
Explanation: Propagation delay is the total delay from input to output
across the critical path of a circuit.

3. How is propagation delay calculated?

A. By summing all gate delays

78

B. By measuring the longest delay at any output

C. By counting the number of gates

D. By checking the voltage level
Answer: B
Explanation: Propagation delay is the maximum delay at any output,
typically along the critical path.

4. What is the delay of a 2-input AND gate in the given example?
A. 2ns

B. 3ns

C. 4 ns

D. 5 ns
Answer: B
Explanation: The delay of a 2-input AND gate is specified as 3 ns.

5. Which gate has a higher delay due to increased fan-in?

A. 2-input AND gate
B. 3-input AND gate

C. NOT gate
D. XOR gate
Answer: B

Explanation: Gates with higher fan-in, like a 3-input AND gate, have
more delay than those with fewer inputs.

6. What does fan-in refer to in digital logic design?

A. Number of outputs a gate can drive

B. Number of inputs to a gate

C. Number of gates in a circuit

D. Number of bits in a signal
Answer: B
Explanation: Fan-in is the number of inputs connected to a logic gate.
7. What is fan-out in digital circuits?

A. Number of gates in a circuit

B. Number of outputs a gate can produce

C. Number of gate inputs a gate’s output can feed

D. Number of bits in a signal
Answer: C

Explanation: Fan-out is the number of gate inputs that a single gate
output can drive.

8. Why is there a limit to fan-out in digital circuits?

A. Due to voltage drop

B. Due to current supply limitations

C. Due to signal frequency

D. Due to gate size
Answer: B

Explanation: A gate can only supply a limited amount of current,
limiting how many gates it can drive.

9. What is the purpose of a buffer gate?

A. To reduce voltage

79

IFT 211 DIGITAL AND LOGIC DESIGN

B. To increase fan-out and drive capability

C. To store data

D. To convert analog to digital
Answer: B
Explanation: Buffer gates amplify signals and increase the number of
gates that can be driven.

10. What effect does a buffer gate have on propagation delay?

A. It eliminates delay

B. It reduces delay

C. It increases delay

D. It has no effect
Answer: C

Explanation: Buffer gates increase propagation delay due to added
circuitry.

Fill in the Blank Questions

1. Gate delay is the time between a change in and the
corresponding change in output.
Answer: input

2. Propagation delay is calculated along the path of a
circuit.

Answer: critical

3. Fan-in refers to the number of connected to a logic
gate.

Answer: inputs

4, Fan-out refers to the number of gate a gate’s output
can feed.
Answer: inputs

5. A gate is used to amplify signals and increase drive
capability.

Answer: buffer

80

Module 3 Combinational and Sequential Circuits

Unit 1 Combinational Circuits and Design Procedure
Unit 2 Binary Subtractor

Unit 3 Multiplexers

Unit 4 De-multiplexers

Unit5 Decoders

Unit 6 Encoders

Unit 7 Latches

Unit 8 Flip-Flops

Unit 1 Combinational Circuits and Design Procedure

Combinational circuits consist of Logic gates. These circuits operate
with binary values. The outputs of combinational circuit depends on the
combination of present inputs. The following figure shows the block
diagram of combinational circuit.

.—) -—)
) — E—
n’ ; Combinational , .
Input : Circuit ;
Variables : : Outputs
_) _)

This combinational circuit has ‘n’ input variables and ‘m’ outputs. Each
combination of input variables will affect the outputs.
Design procedure of Combinational circuits

. Find the required number of input variables and outputs from given
specifications.
. Formulate the Truth table. If there are ‘n’ input variables, then

there will be 2n possible combinations. For each combination of
input, find the output values.

. Find the Boolean expressions for each output. If necessary,
simplify those expressions.
. Implement the above Boolean expressions corresponding to each

output by using Logic gates.

Binary Adder

The most basic arithmetic operation is addition. The circuit, which
performs the addition of two binary numbers is known as Binary adder.
First, let us implement an adder, which performs the addition of two bits.
Half Adder

81

IFT 211 DIGITAL AND LOGIC DESIGN

Half adder is a combinational circuit, which performs the addition of two
binary numbers A and B are of single bit. It produces two outputs sum, S
& carry, C.

The Truth table of Half adder is shown below.

Inputs Outputs

A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

When we do the addition of two bits, the resultant sum can have the values
ranging from 0 to 2 in decimal. We can represent the decimal digits 0 and
1 with single bit in binary. But, we can’t represent decimal digit 2 with
single bit in binary. So, we require two bits for representing it in binary.
When we do the addition of two bits, the resultant sum can have the values
ranging from 0 to 2 in decimal. We can represent the decimal digits 0 and
1 with single bit in binary. But, we can’t represent decimal digit 2 with
single bit in binary. So, we require two bits for representing it in binary.
Let, sum, S is the Least significant bit and carry, C is the Most significant
bit of the resultant sum. For first three combinations of inputs, carry, C is
zero and the value of S will be either zero or one based on the number of
ones present at the inputs. But, for last combination of inputs, carry, C is
one and sum, S is zero, since the resultant sum is two.

From Truth table, we can directly write the Boolean functions for each
output as

S=A®B

C=AB

We can implement the above functions with 2-input Ex-OR gate & 2-
input AND gate. The circuit diagram of Half adder is shown in the

following figure.
A —
S
) o—

C

In the above circuit, a two input Ex-OR gate & two input AND gate
produces sum, S & carry, C respectively. Therefore, Half-adder performs
the addition of two bits.

Full Adder

Full adder is a combinational circuit, which performs the addition of
three bits A, B and Cin. Where, A & B are the two parallel significant bits
and Cin is the carry bit, which is generated from previous stage. This Full

82

adder also produces two outputs sum, S & carry, Cout, Which are similar
to Half adder.
The Truth table of Full adder is shown below.

Inputs Outputs

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

When we do the addition of three bits, the resultant sum can have the
values ranging from 0 to 3 in decimal. We can represent the decimal digits
0 and 1 with single bit in binary. But, we can’t represent the decimal digits
2 and 3 with single bit in binary. So, we require two bits for representing
those two decimal digits in binary.

Let, sum, S is the Least significant bit and carry, Couis the Most
significant bit of resultant sum. It is easy to fill the values of outputs for
all combinations of inputs in the truth table. Just count the number of
ones present at the inputs and write the equivalent binary number at
outputs. If Cin is equal to zero, then Full adder truth table is same as that
of Half adder truth table.

We will get the following Boolean functions for each output after
simplification.

S=A®B®Ci

Cout=AB + (A & B)cin

The sum, S is equal to one, when odd number of ones present at the inputs.
We know that Ex-OR gate produces an output, which is an odd function.
So, we can use either two 2input Ex-OR gates or one 3-input Ex-OR gate
in order to produce sum, S. We can implement carry, Cout USing two 2-
input AND gates & one OR gate. The circuit diagram of Full adder is
shown in the following figure.

83

IFT 211 DIGITAL AND LOGIC DESIGN

This adder is called as Full adder because for implementing one Full

Half Adder

adder, we require two Half adders and one OR gate. If Cin is zero, then
Full adder becomes Half adder. We can verify it easily from the above
circuit diagram or from the Boolean functions of outputs of Full adder.
4-bit Binary Adder

The 4-bit binary adder performs the addition of two 4-bit numbers. Let
the 4-bit binary numbers, A = AsA2A1Ao and B = B3B2B1Bo. We can
implement 4-bit binary adder in one of the two following ways.

. Use one Half adder for doing the addition of two Least significant
bits and three Full adders for doing the addition of three higher significant
bits.

. Use four Full adders for uniformity. Since, initial carry Cin is zero,
the Full adder which is used for adding the least significant bits becomes
Half adder.

For the time being, we considered second approach. The block
diagram of 4-bit binary adder is shown in the following figure.

As B A, B A; By Ay Bg
Full Adder Full Adder |« Full Adder [€ Full Adder €—
Cs Cy Cy Cp=0
Ca S3 S; St So

Here, the 4 Full adders are cascaded. Each Full adder is getting the
respective bits of two parallel inputs A & B. The carry output of one Full
adder will be the carry input of subsequent higher order Full adder. This

84

4-bit binary adder produces the resultant sum having at most 5 bits. So,
carry out of last stage Full adder will be the MSB.

In this way, we can implement any higher order binary adder just by
cascading the required number of Full adders. This binary adder is also
called as ripple carry binary adder because the carry
propagates ripples from one stage to the next stage.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

1. What defines a combinational logic circuit?

It stores data

Its output depends only on current inputs

It has memory elements

It operates sequentially

nswer: B

Which of the following is a basic combinational circuit?
Flip-flop

Counter

Multiplexer

Register

nswer: C

What is the function of a decoder?

To store binary data

To convert binary input into a unique output line
To perform arithmetic operations

To generate clock signals

nswer: B

Which combinational circuit selects one input from many?
Decoder

Demultiplexer

Comparator

Multiplexer

nswer: E

What does a half adder do?

Multiplies two bits

Adds two bits and gives sum and carry
Subtracts two bits

Stores binary numbers

nswer: B

Which logic gates are used in a half adder?
AND and OR

XOR and AND

NAND and NOR

: NOT and XOR

nswer: B

What is the difference between a half adder and a full adder?

NPOOWEPOPUOWPUPUONPAPUOIPWPOOWPNPOODD

85

IFT 211 DIGITAL AND LOGIC DESIGN

. Full adder adds three bits including carry-in
Half adder is faster
Full adder uses fewer gates
. Half adder stores data
nswer: A
What is the output of a 2-to-4 decoder?
. 2 lines
4 lines
8 lines
. 1 line
nswer: B
Which circuit distributes one input to multiple outputs?

A
A
8
A
A
9
A Multiplexer

Demultiplexer

Decoder

Adder

Answer: B

0. What is the purpose of a comparator?
A To compare two binary numbers

To store data

To decode signals

D. To generate clock pulses
Answer: A

B
C
D
B
C
D
B
C
D
1
B.
C.

Fill in the Blank Questions

1. A logic circuit’s output depends only on current
inputs. — combinational

2. A adds two bits and produces sum and carry. — half
adder

3. A selects one input from many inputs. — multiplexer
4, A converts binary input into a unique output line. —
decoder

86

Unit 2 Binary Subtractor

The circuit, which performs the subtraction of two binary numbers is
known as Binary subtractor. We can implement Binary subtractor in
following two methods.

. Cascade Full subtractors
. 2’s complement method

In first method, we will get an n-bit binary subtractor by cascading ‘n’
Full subtractors. So, first you can implement Half subtractor and Full
subtractor, similar to Half adder & Full adder. Then, you can implement
an n-bit binary subtractor, by cascading ‘n’ Full subtractors. So, we will
be having two separate circuits for binary addition and subtraction of two
binary numbers.

In second method, we can use same binary adder for subtracting two
binary numbers just by doing some modifications in the second input. So,
internally binary addition operation takes place but, the output is resultant
subtraction.

We know that the subtraction of two binary numbers A & B can be written
as,

A —B=A +(2's compliment of B)

= A—-B=A+ (1's compliment of B) + 1

4-bit Binary Subtractor

The 4-bit binary subtractor produces the subtraction of two 4-bit
numbers. Let the 4bit binary numbers, A = AsA2A1A0 and B = B3B2B:1Bo.
Internally, the operation of 4-bit Binary subtractor is similar to that of 4-
bit Binary adder. If the normal bits of binary number A, complemented
bits of binary number B and initial carry borrow, Ci» as one are applied to
4-bit Binary adder, then it becomes 4-bit Binary subtractor. The block
diagram of 4-bit binary subtractor is shown in the following figure.

87

IFT 211 DIGITAL AND LOGIC DESIGN

A; B A, B Ar By Ao By
Full Adder Full Adder |« Full Adder[€ Full Adder [¢—
C3 CZ CI CO‘1
Cq S3 S Sy So

This 4-bit binary subtractor produces an output, which is having at most
5 bits. If Binary number A is greater than Binary number B, then MSB of
the output is zero and the remaining bits hold the magnitude of A-B. If
Binary number A is less than Binary number B, then MSB of the output
is one. So, take the 2’s complement of output in order to get the magnitude
of A-B.

In this way, we can implement any higher order binary subtractor just by
cascading the required number of Full adders with necessary
modifications.

Binary Adder / Subtractor

The circuit, which can be used to perform either addition or subtraction
of two binary numbers at any time is known as Binary Adder /
subtractor. Both, Binary adder and Binary subtractor contain a set of Full
adders, which are cascaded. The input bits of binary number A are directly
applied in both Binary adder and Binary subtractor.

There are two differences in the inputs of Full adders that are present in
Binary adder and Binary subtractor.

. The input bits of binary number B are directly applied to Full
adders in Binary adder, whereas the complemented bits of binary number
B are applied to Full adders in Binary subtractor.

. The initial carry, Co = 0 is applied in 4-bit Binary adder, whereas
the initial carry borrow, Co = 1 is applied in 4-bit Binary subtractor.

We know that a 2-input Ex-OR gate produces an output, which is same
as that of first input when other input is zero. Similarly, it produces an
output, which is complement of first input when other input is one.
Therefore, we can apply the input bits of binary number B, to 2-input Ex-
OR gates. The other input to all these Ex-OR gates is Co. S0, based on the
value of Co, the Ex-OR gates produce either the normal or complemented
bits of binary number B.

88

4-bit Binary Adder / Subtractor

The 4-bit binary adder / subtractor produces either the addition or the
subtraction of two 4-bit numbers based on the value of initial carry or
borrow, Co. Let the 4-bit binary numbers, A = AzAA1A0 and B =
B3B2B1Bo. The operation of 4-bit Binary adder / subtractor is similar to
that of 4-bit Binary adder and 4-bit Binary subtractor.

Apply the normal bits of binary numbers A and B & initial carry or
borrow, Co from externally to a 4-bit binary adder. The block diagram of
4-bit binary adder / subtractor is shown in the following figure.

A3 B3 Ay By A By Ay Bg &
Y Y Y
Full Adder Full Adder |« Full Adder[€ Full Adder €
C3 G Cl
C4 S3 S2 51 S0

If initial carry, Cois zero, then each full adder gets the normal bits of
binary numbers A & B. So, the 4-bit binary adder / subtractor produces
an output, which is the addition of two binary numbers A & B.

If initial borrow, Co is one, then each full adder gets the normal bits of
binary number A & complemented bits of binary number B. So, the 4-bit
binary adder / subtractor produces an output, which is the subtraction of
two binary numbers A & B.

Therefore, with the help of additional Ex-OR gates, the same circuit can
be used for both addition and subtraction of two binary numbers.

SELF -ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the main function of a binary subtractor?

A. To multiply binary numbers

B. To divide binary numbers

C. To subtract binary numbers

D. To convert binary to decimal
Answer: C
Explanation: A binary subtractor performs subtraction between two
binary numbers.

2. Which method uses a binary adder to perform subtraction?
A Cascade full subtractors

89

IFT 211 DIGITAL AND LOGIC DESIGN

B. 2’s complement method

C. Decimal subtraction

D. Half subtractor method
Answer: B

Explanation: The 2’s complement method modifies the second input and
uses a binary adder to perform subtraction.

3. What is the result of subtracting B from A using 2’s
complement?

A A-B=A+B

B. A —B=A + (1’s complement of B)

C. A —B=A +(2’s complement of B)

D. A - B = A - (2°s complement of B)
Answer: C
Explanation: Subtraction is performed by adding the 2’s complement of
Bto A.

4, How many bits can the output of a 4-bit binary subtractor have
at most?

A 4

B. 5

C. 6

D. 8

Answer: B
Explanation: The output may include an extra bit for the sign, making it
up to 5 bits.

5. What does the MSB of the output indicate in a binary
subtractor?

A. The parity of the result

B. The overflow condition

C. Whether A is greater than B

D. The carry bit
Answer: C
Explanation: MSB indicates whether A is greater than B (0) or less than
B ().

6. What is the role of Ex-OR gates in a binary adder/subtractor
circuit?

A. To perform multiplication

B. To generate carry bits

C. To complement bits based on control input

D. To store intermediate results
Answer: C
Explanation: Ex-OR gates produce either normal or complemented bits
of B based on the control input Co.

7. What value of Co is used for subtraction in a binary
adder/subtractor?

A 0

B. 1

90

C. Depends on A
D. Depends on B
Answer: B
Explanation: Co = 1 is used to initiate subtraction using the 2’s
complement method.

8. Which component is used in both binary adder and subtractor
circuits?

A Decoder

B. Full adder

C. Multiplexer
D. Comparator

Answer: B
Explanation: Full adders are used in both addition and subtraction
operations.

9. What happens when A < B in a binary subtractor?

A. The result is negative

B. The result is zero

C. The result is undefined

D. The result IS positive
Answer: A
Explanation: When A is less than B, the MSB is 1, indicating a negative
result.

10. What is the advantage of using a binary adder/subtractor
circuit?

A. It reduces power consumption

B. It simplifies hardware design

C. It performs multiplication

D. It increases memory size
Answer: B

Explanation: A single circuit can perform both addition and subtraction,
simplifying design.

Fill in the Blank Questions

1. A binary subtractor can be implemented using either cascade full
subtractors or the method.
Answer: 2’s complement

2. The 2’s complement of a binary number is obtained by taking the

1I’s complement and adding

Answer: 1

3. In a 4-bit binary subtractor, the MSB of the output indicates
whether A IS than B.
Answer: greater

4, The control input Co is set to to perform subtraction
in a binary adder/subtractor.
Answer: 1

91

IFT 211 DIGITAL AND LOGIC DESIGN

5. Ex-OR gates are used to produce either normal or bits
of B based on the value of Co.
Answer: complemented

92

Unit 3: Multiplexers

Multiplexer is a combinational circuit that has maximum of 2" data
inputs, ‘n’ selection lines and single output line. One of these data inputs
will be connected to the output based on the values of selection lines.
Since there are ‘n’ selection lines, there will be 2" possible combinations
of zeros and ones. So, each combination will select only one data input.
Multiplexer is also called as Mux.

4x1 Multiplexer

4x1 Multiplexer has four data inputs Is, I2, 11 & lo, two selection lines s; &
So and one output Y. The block diagram of 4x1 Multiplexer is shown in
the following figure. One of these 4 inputs will be connected to the output
based on the combination of inputs present at these two selection
lines. Truth table of 4x1 Multiplexer is shown below.

I3 —>
b — 4x1 Y
I, ——»{ Multiplexer
Ip, —>
11
S1 Sp
Selection Lines Output
S1 So Y
0 0 lo
0 1 I1
1 0 I2
1 1 I3

From Truth table, we can directly write the Boolean function for output,
Y as
Y =S1"So" lo+ S1" Soli+ S1So' 2+ S1 So |3

93

IFT 211 DIGITAL AND LOGIC DESIGN

We can implement this Boolean function using Inverters, AND gates &
OR gate. The circuit diagram of 4x1 multiplexer is shown in the

S

50 —1_

I

=oiele

Io—

following figure.

We can easily understand the operation of the above circuit. Similarly,
you can implement 8x1 Multiplexer and 16x1 multiplexer by following
the same procedure.

Implementation of Higher-order Multiplexers.

Now, let us implement the following two higher-order Multiplexers using
lower-order Multiplexers.

. 8x1 Multiplexer

. 16x1 Multiplexer

8x1 Multiplexer

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers
and 2x1 Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2
selection lines and one output. Whereas, 8x1 Multiplexer has 8 data
inputs, 3 selection lines and one output.

So, we require two 4x1 Multiplexers in first stage in order to get the 8
data inputs. Since, each 4x1 Multiplexer produces one output, we require
a 2x1 Multiplexer in second stage by considering the outputs of first
stage as inputs and to produce the final output.

Let the 8x1 Multiplexer has eight data inputs |7 to lo, three selection lines
Ss2, S1 & sO and one output Y. The Truth table of 8x1 Multiplexer is
shown below.

94

Selection Inputs Output
S S1

&
<

R k| P P O o o o

R P O O k| k| O] O

R O k| O r| O] k| O
@

We can implement 8x1 Multiplexer using lower order Multiplexers easily
by considering the above Truth table. The block diagram of 8x1
Multiplexer is shown in the following figure.

The same selection lines, s1 & sp are applied to both 4x1 Multiplexers.

I; ——>

Ie —> 4x1

Is —> Multiplexer

Iz —>

Y

2x1
Multiplexer

: j

3 —> S

—> Y

I

I —> 4x1

I, ——>» Multiplexer

Ig —>

The data inputs of upper 4x1 Multiplexer are 17 to 14 and the data inputs
of lower 4x1 Multiplexer are Isto lo. Therefore, each 4x1 Multiplexer
produces an output based on the values of selection lines, s1 & So.

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1
Multiplexer that is present in second stage. The other selection line, sz is
applied to 2x1 Multiplexer.

. If 52 is zero, then the output of 2x1 Multiplexer will be one of the
4 inputs I3 to lo based on the values of selection lines s1 & So.
. If s2 is one, then the output of 2x1 Multiplexer will be one of the 4

inputs 17 to 14 based on the values of selection lines s1 & So.

95

IFT 211 DIGITAL AND LOGIC DESIGN

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1
Multiplexer performs as one 8x1 Multiplexer.

16x1 Multiplexer

In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers
and 2x1 Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3
selection lines and one output. Whereas, 16x1 Multiplexer has 16 data
inputs, 4 selection lines and one output.

So, we require two 8x1 Multiplexers in first stage in order to get the 16
data inputs. Since, each 8x1 Multiplexer produces one output, we require
a 2x1 Multiplexer in second stage by considering the outputs of first stage
as inputs and to produce the final output.

Let the 16x1 Multiplexer has sixteen data inputs I1s to lo, four selection
lines s3 to So and one output Y. The Truth table of 16x1 Multiplexer is
shown below.

Selection Inputs Output
S3 S2

(2]
=
[p]
IS}
_<

Rl R | R | P R R o o o o o o o o

| | | | o o o o | | | | o o ol o

R~ o o] | | o o r| r| o o | | o o

| ol | ol | o] | o] | o | o | o | o
3

96

We can implement 16x1 Multiplexer using lower order Multiplexers
easily by considering the above Truth table.
The block diagram of 16x1 Multiplexer is shown in the following figure.

15—
Iig —|

I12 > 8x1
— 3| Multiplexer

\4

) 2x1
S1 Multiplexer

\4

S0

Y V. VY T
I, —)
S»

J

8x1

I3 ——| Multiplexer

The same selection lines, sz, s1 & So are applied to both 8x1 Multiplexers.
The data inputs of upper 8x1 Multiplexer are I15 to Is and the data inputs
of lower 8x1 Multiplexer are I7 to lo. Therefore, each 8x1 Multiplexer
produces an output based on the values of selection lines, sz, S1 & So.

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1
Multiplexer that is present in second stage. The other selection line, sz is
applied to 2x1 Multiplexer.

. If s3is zero, then the output of 2x1 Multiplexer will be one of the
8 inputs Is7 to 1o based on the values of selection lines sz, S1 & So.
. If s3 is one, then the output of 2x1 Multiplexer will be one of the 8

inputs I15 to Is based on the values of selection lines s, s1 & So.
Therefore, the overall combination of two 8x1 Multiplexers and one 2x1
Multiplexer performs as one 16x1 Multiplexer.

97

IFT 211 DIGITAL AND LOGIC DESIGN

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of a multiplexer?

A To perform arithmetic operations

B. To select one of many inputs and forward it to the output

C. To store binary data

D. To convert analog signals to digital
Answer: B
Explanation: A multiplexer selects one of several input signals and
forwards it to a single output line based on selection inputs.

2. How many data inputs does a 4x1 multiplexer have?

A. 2

B. 4

C. 8

D. 1

Answer: B
Explanation: A 4x1 multiplexer has 4 data inputs and 2 selection lines.
3. What is the Boolean expression for the output of a 4x1
multiplexer?

A. Y =S51S0I0 + S1S0I1 + S1S012 + S1S0I13

B. Y =S1'S0'T0 + S1'SO0I1 + SIS0'12 + S1S0I3

C. Y=10+I11+12+13

D. Y = S1 + SO + 10
Answer: B
Explanation: The output is determined by the combination of selection
lines and corresponding input.

4, How many selection lines are needed for an 8x1 multiplexer?
A. 2

B. 3

C. 4

D. 1

Answer: B

Explanation: An 8x1 multiplexer requires 3 selection lines to choose
among 8 inputs.

5. What is the role of the 2x1 multiplexer in an 8x1 multiplexer
implementation using 4x1 multiplexers?

A. To generate selection lines

B. To combine outputs from the 4x1 multiplexers

C. To store data

D. To perform logical operations
Answer: B
Explanation: The 2x1 multiplexer selects between the outputs of the two
4x1 multiplexers.

6. How many data inputs does a 16x1 multiplexer have?

A 8

98

B. 4

C. 16

D. 32

Answer: C
Explanation: A 16x1 multiplexer has 16 data inputs and 4 selection lines.
7. Which selection line determines whether the upper or lower
8x1 multiplexer is selected in a 16x1 multiplexer?

A. SO

B. S1

C. S2

D. S3

Answer: D

Explanation: S3 is used by the 2x1 multiplexer to select between the
outputs of the two 8x1 multiplexers.

8. What is the total number of possible input combinations for a
4x1 multiplexer?

A. 2

B. 4

C. 8

D. 16

Answer: B

Explanation: With 2 selection lines, there are 22 = 4 possible
combinations.

9. What is the advantage of using lower-order multiplexers to
build higher-order ones?

A. Reduces power consumption

B. Simplifies circuit design

C. Increases memory
D. Improves signal strength
Answer: B

Explanation: Using lower-order multiplexers allows modular and
scalable design of complex circuits.

10. What does the output of a multiplexer depend on?

A. The number of gates

B. The selection line values

C. The clock signal

D. The power supply
Answer: B
Explanation: The output is determined by the values of the selection
lines.

Fill in the Blank Questions

1. A multiplexer with n selection lines can handle up to

data inputs.
Answer: 2*n

2. A 4x1 multiplexer uses selection lines.
Answer: 2

99

IFT 211 DIGITAL AND LOGIC DESIGN

3. The Boolean expression for a 4x1 multiplexer output is derived

from its table.

Answer: truth

4. In a 16x1 multiplexer, the selection line chooses

between the two 8x1 multiplexers.

Answer: S3

5. The output of a multiplexer is determined by the values of the
lines.

Answer: selection

100

Unit 4 De-Multiplexers

De-Multiplexer is a combinational circuit that performs the reverse
operation of Multiplexer. It has single input, ‘n’ selection lines and
maximum of 2" outputs. The input will be connected to one of these
outputs based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2" possible combinations
of zeros and ones. So, each combination can select only one output. De-
Multiplexer is also called as De-Mux.

1x4 De-Multiplexer

1x4 De-Multiplexer has one input I, two selection lines, s1 & so and four
outputs Y3, Y2, Y1 &Yo. The block diagram of 1x4 De-Multiplexer is
shown in the following figure.

The single input ‘I’ will be connected to one of the four outputs, Y3 to
Yo based on the values of selection lines s1 & sO. The Truth table of 1x4
De-Multiplexer is shown below.

1x4
De-Multiplexer

(I

S1 So

Selection Inputs Outputs
S1 So Y3 Yo Y1 Yo

RO O
R Ok O

0 0 0 I
0 0 I 0
0 I 0 0
I 0 0 0

From the above Truth table, we can directly write the Boolean
functions for each output as

Y3 = s1S0l

Y2=5150"1
Y1 =51 Sol
Yo=51"50'1

101

IFT 211 DIGITAL AND LOGIC DESIGN

We can implement these Boolean functions using Inverters & 3-input
AND gates. The circuit diagram of 1x4 De-Multiplexer is shown in the
following figure.

I

S1

VIV

Sl

We can easily understand the operation of the above circuit. Similarly,
you can implement 1x8 De-Multiplexer and 1x16 De-Multiplexer by
following the same procedure.

Implementation of Higher-order De-Multiplexers

Now, let us implement the following two higher-order De-Multiplexers
using lower-order De-Multiplexers.

. 1x8 De-Multiplexer

. 1x16 De-Multiplexer

1x8 De-Multiplexer
In this section, let us implement 1x8 De-Multiplexer using 1x4 De-
Multiplexers and 1x2 De-Multiplexer. We know that 1x4 De-Multiplexer

has single input, two selection lines and four outputs. Whereas, 1x8 De-
Multiplexer has single input, three selection lines and eight outputs.

102

Selection Inputs | Outputs

S2 St |So [Y7 |Ys |Ys |Ya [Ys [Y2 |Y:1 [Yo
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

So, we require two 1x4 De-Multiplexers in second stage in order to get
the final eight outputs. Since, the number of inputs in second stage is two,
we require 1x2 DeMultiplexer in first stage so that the outputs of first
stage will be the inputs of second stage. Input of this 1x2 De-Multiplexer
will be the overall input of 1x8 De-Multiplexe.
Let the 1x8 De-Multiplexer has one input I, three selection lines sz, s1 &
So and outputs Y7 to Yo. The Truth table of 1x8 De-Multiplexer is shown

below.

We can implement 1x8 De-Multiplexer using lower order Multiplexers
easily by considering the above Truth table. The block diagram of 1x8
De-Multiplexer is shown in the following figure.

De-Multiplexer

T2

T

S2

S1

So

\4

—
1x4
De-Multiplexer
—
—>
A A
Y_ VY
—
1x4
De-Multiplexer
—
—>

The common selection lines, s1 & spare applied to both 1x4 De-
Multiplexers. The outputs of upper 1x4 De-Multiplexer are Y7 to Y4 and
the outputs of lower 1x4 De-Multiplexer are Y3 to Yo.

103

IFT 211 DIGITAL AND LOGIC DESIGN

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s is zero,
then one of the four outputs of lower 1x4 De-Multiplexer will be equal to
input, | based on the values of selection lines s1 & so. Similarly, if sz is
one, then one of the four outputs of upper 1x4 DeMultiplexer will be equal
to input, | based on the values of selection lines s1 & So.

1x16 De-Multiplexer

In this section, let us implement 1x16 De-Multiplexer using 1x8 De-
Multiplexers and 1x2 De-Multiplexer. We know that 1x8 De-Multiplexer
has single input, three selection lines and eight outputs. Whereas, 1x16
De-Multiplexer has single input, four selection lines and sixteen outputs.
So, we require two 1x8 De-Multiplexers in second stage in order to get
the final sixteen outputs. Since, the number of inputs in second stage is
two, we require 1x2 DeMultiplexer in first stage so that the outputs of
first stage will be the inputs of second stage. Input of this 1x2 De-
Multiplexer will be the overall input of 1x16 De-Multiplexer.

Let the 1x16 De-Multiplexer has one input I, four selection lines ss, Sz,
s1& soand outputs Yisto Yo. The block diagram of 1x16 De-
Multiplexer using lower order Multiplexers is shown in the following
figure.

The common selection lines sz, s1 & So are applied to both 1x8 De-
Multiplexers. The outputs of upper 1x8 De-Multiplexer are Y15 to Yg and
the outputs of lower 1x8 DeMultiplexer are Y7 to Yo.

The other selection line, s3 is applied to 1x2 De-Multiplexer. If sz is zero,
then one of the eight outputs of lower 1x8 De-Multiplexer will be equal
to input, | based on the values of selection lines sz, S1 & So. Similarly, if
s3 is one, then one of the 8 outputs of upper 1x8 De-Multiplexer will be
equal to input, | based on the values of selection lines sz, S1 & So.

———> Yis
—————>» Yi,4
————> Y13
————> Y1>
F——> Y11

1 x 8

De-Multiplexer

[——> Yaio
L > Yo
F————> Ys

sS2

1 x 2

De-Multiplexer so

T N

i
s3 F———> Y's
F———> Y,
De-Multiplexer b—m — Y=

—>Y2
L > vy

1 x 8

[—> Yo

104

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of a De-Multiplexer?
A. To combine multiple inputs into one output

B. To convert analog signals to digital

C. To distribute a single input to one of many outputs

D. To store binary data

Answer: C

E

Explanation: A De-Multiplexer routes a single input to one of several
outputs based on selection lines.

2. How many outputs does a 1x4 De-Multiplexer have?

A. 2

B. 4

C. 8

D. 1

Answer: B
Explanation: A 1x4 De-Multiplexer has 4 outputs and 2 selection lines.
3. What is the Boolean expression for output YO in a 1x4 De-
Multiplexer?

A s1 \cdot sO \cdot |

B. s1'\cdot sO' \cdot |

C. s1 \cdot sO' \cdot I

D. sl \cdot sO \cdot I
Answer: B
Explanation: YO is active when both selection lines are 0, so the
expression is s1' \cdot sO' \cdot I.

4, How many selection lines are needed for a 1x8 De-Multiplexer?
A. 2
B. 3
C. 4
D. 1
Answer: B

Explanation: A 1x8 De-Multiplexer requires 3 selection lines to choose
among 8 outputs.

5. What is the role of the 1x2 De-Multiplexer in the 1x8 De-
Multiplexer implementation?

A. To generate selection lines

B To split the input into two paths for the 1x4 De-Multiplexers

C. To store data

D. To perform logical operations

E.

A

nswer: B

105

IFT 211 DIGITAL AND LOGIC DESIGN

Explanation: The 1x2 De-Multiplexer directs the input to one of the two
1x4 De-Multiplexers.

6. How many outputs does a 1x16 De-Multiplexer have?

A 8

B. 4

C. 16

D. 32

Answer: C

Explanation: A 1x16 De-Multiplexer has 16 outputs and 4 selection
lines.

7. Which selection line determines whether the upper or lower
1x8 De-Multiplexer is selected in a 1x16 De-Multiplexer?

A SO

B. S1
C. S2
D. S3
Answer: D

Explanation: S3 is used by the 1x2 De-Multiplexer to select between the
two 1x8 De-Multiplexers.

8. What is the total number of possible output combinations for
a 1x4 De-Multiplexer?

A. 2

B. 4

C. 8

D. 16

Answer: B
Explanation: With 2 selection lines, there are 22 = 4 possible output
paths.

9. What is the advantage of using lower-order De-Multiplexers to

build higher-order ones?
A. Reduces power consumption
B. Simplifies circuit design

C. Increases memory
D. Improves signal strength
Answer: B

Explanation: Using lower-order De-Multiplexers allows modular and
scalable design of complex circuits.

10. What determines which output line is activated in a De-
Multiplexer?

A. The number of gates

B. The selection line values
C. The clock signal

D. The power supply

E.

Answer: B

106

Explanation: The output is determined by the values of the selection
lines.
Fill in the Blank Questions

1. A De-Multiplexer with n selection lines can have up to
outputs.

Answer: 2*n

2. A 1x4 De-Multiplexer uses selection lines.

Answer: 2

3. The Boolean expression for output Y3 in a 1x4 De-Multiplexer is

Answer: sl \cdot sO \cdot |

4. In a 1x16 De-Multiplexer, the selection line chooses

between the two 1x8 De-Multiplexers.

Answer: S3

5. The output of a De-Multiplexer is determined by the values of the
lines.

Answer: selection

107

IFT 211 DIGITAL AND LOGIC DESIGN

Unit5 Decoder

Decoder is a combinational circuit that has ‘n’ input lines and maximum
of 2" output lines. One of these outputs will be active High based on the
combination of inputs present, when the decoder is enabled. That means
decoder detects a particular code. The outputs of the decoder are nothing
but the min terms of ‘n’ input variables lines, when it is enabled.

2 to 4 Decoder

Let 2 to 4 Decoder has two inputs A1 & Ao and four outputs Y3, Yz, Y1 &
Yo. The block diagram of 2 to 4 decoder is shown in the following figure

Ay —— ¥

! 2 to 4 Y,
Ao M Decoder

—> Y4

E — —> Yo

One of these four outputs will be ‘1’ for each combination of inputs when
enable, E is ‘1°. The Truth table of 2 to 4 decoder is shown below.

Enable Inputs Outputs
E A1 Ao Y3 Y Y1 Yo
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

From Truth table, we can write the Boolean functions for each output as

Y3z =E.A1.Aq

Y, = E.A1. A0

Y1 =E.A/ . Ao

Yo = E.A1".Ad

Each output is having one product term. So, there are four product terms
in total. We can implement these four product terms by using four AND
gates having three inputs each & two inverters. The circuit diagram of 2
to 4 decoder is shown in the following figure.

108

Each output is having one product term. So, there are four product terms
in total. We can implement these four product terms by using four AND
gates having three inputs each & two inverters. The circuit diagram of 2
to 4 decoder is shown in the following figure.

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of
two input variables A1 & Ao, when enable, E is equal to one. If enable, E

Ay

Y3

Ao —1_

Y2

Y3

Yo

Slsléje

E

IS zero, then all the outputs of decoder will be equal to zero.

Similarly, 3 to 8 decoder produces eight min terms of three input variables
Az, A1 & Ao and 4 to 16 decoder produces sixteen min terms of four input
variables Az, Az, A1 & Ao.

Implementation of Higher-order Decoders

Now, let us implement the following two higher-order decoders using
lower-order decoders.

. 3 to 8 decoder

. 4 to 16 decoder

3 to 8 Decoder

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders.
We know that 2 to 4 Decoder has two inputs, A1 & Ao and four outputs,
Y3 to Yo. Whereas, 3 to 8 Decoder has three inputs Az, A1 & Ao and eight
outputs, Y7 to Yo.

We can find the number of lower order decoders required for
implementing higher order decoder using the following formula.
Required number of lower order decoders = m2/ mz

Where,

my is the number of outputs of lower order decoder.

m> is the number of outputs of higher order decoder.

109

IFT 211 DIGITAL AND LOGIC DESIGN

Here, m¢= 4 and my = 8. Substitute, these two values in the above
formula.

Required number of 2 to 4 decoders=8/4=2

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8
decoder. The block diagram of 3 to 8 decoder using 2 to 4 decoders is
shown in the following figure.

The parallel inputs A1 & Ag are applied to each 2 to 4 decoder. The
complement of input Az is connected to Enable, E of lower 2 to 4 decoder
in order to get the outputs, Y3 to Yo. These are the lower four min terms.

—> Y7
) 2to 4 Ye

Decoder
—> Y5
_) Y
Ay » E ?
——> Y3

Al >

2to 4 Y,

Ao ”| Decoder
—> Y4
S —> Yo

The input, Az is directly connected to Enable, E of upper 2 to 4 decoder
in order to get the outputs, Y7 to Y4. These are the higher four min terms.

4 to 16 Decoder

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders.
We know that 3 to 8 Decoder has three inputs A2, A1 & Ao and eight
outputs, Y7 to Yo. Whereas, 4 to 16 Decoder has four inputs Az, A2, A1 &
Ao and sixteen outputs, Y15 to Yo

We know the following formula for finding the number of lower order
decoders required.

Required number of lower order decoders = my/ my

Substitute, m; = 8 and m2 = 16 in the above formula.

Required number of 3 to 8 decoders=16/8=2

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16
decoder. The block diagram of 4 to 16 decoder using 3 to 8 decoders is
shown in the following figure

110

Y

3to8

Y VY

Decoder L3 Vi

b
(o]
A
m
<
re)

— Y7
> Ys
—> Y5
—> Yy
Decoder [v,
—> Y
—> Yy
—> Y

>
(]
y

3to8

>
s
Y Y

Y
m

The parallel inputs Az, A1 & Ao are applied to each 3 to 8 decoder. The
complement of input, A3 is connected to Enable, E of lower 3 to 8 decoder
in order to get the outputs, Y7 to Yo. These are the lower eight min terms.
The input, As is directly connected to Enable, E of upper 3 to 8 decoder
in order to get the outputs, Yisto Yg. These are the higher eight min
terms.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of a decoder in digital circuits?
A. To store binary data

B. To convert analog signals to digital

C. To detect a specific input combination and activate one output

D. To perform arithmetic operations
Answer: C
Explanation: A decoder activates one output based on a specific
combination of input signals.

2. How many outputs does a 2-to-4 decoder have?
A. 2
B. 4
C. 8

111

IFT 211 DIGITAL AND LOGIC DESIGN

D. 16

Answer: B
Explanation: A 2-to-4 decoder has 4 outputs and 2 input lines.

3. What condition must be true for a decoder to activate any
output?

A. All inputs must be zero

B. Enable signal must be high

C. All outputs must be high

D. Inputs must be complemented
Answer: B
Explanation: The decoder only activates outputs when the enable signal
is high.

4, What is the Boolean expression for output YO in a 2-to-4
decoder?

A E \cdot Al \cdot AO

B. E \cdot Al' \cdot AO'

C. Al \cdot AO

D. Al \cdot A0
Answer: B
Explanation: YO is active when both inputs are 0 and enable is 1.

5. How many 2-to-4 decoders are needed to implement a 3-to-8
decoder?

A. 1

B. 2

C. 3

D. 4

Answer: B

Explanation: Two 2-to-4 decoders are required to implement a 3-to-8
decoder.

6. Which input is used to control the enable signal in the 3-to-8
decoder implementation?

A. A0

B. Al

C. A2

D. E

Answer: C

Explanation: A2 is used to enable either the upper or lower 2-to-4
decoder.

7. How many outputs does a 4-to-16 decoder have?

A. 8

B. 12

C. 16

D. 32

Answer: C

Explanation: A 4-to-16 decoder has 16 outputs and 4 input lines.

112

8. How many 3-to-8 decoders are needed to implement a 4-to-16
decoder?

A. 1
B. 2
C. 4
D. 8
Answer: B

Explanation: Two 3-to-8 decoders are required to implement a 4-to-16
decoder.

9. What do the outputs of a decoder represent when enabled?

A. Max terms

B. Sum terms

C. Min terms

D. Logic gates
Answer: C
Explanation: Decoder outputs represent the min terms of the input
variables.

10. What happens to the outputs of a decoder when the enable
signal is 0?

A. All outputs are high

B. All outputs are undefined

C. All outputs are low

D. Outputs depend on inputs
Answer: C
Explanation: When enable is 0, all outputs of the decoder are 0.

Fill in the Blank Questions

1. A decoder with n input lines can have up to output
lines.

Answer: 2*n

2. The output of a decoder is active only when the signal
IS high.
Answer: enable

3. The Boolean expression for output Y3 in a 2-to-4 decoder is

Answer: E \cdot Al \cdot AO

4. To implement a 3-to-8 decoder using 2-to-4 decoders, the input
is used to control the enable lines.

Answer: A2

5. The outputs of a decoder represent the of the input

variables.

Answer: min terms
Unit 6: Encoders

An Encoder is a combinational circuit that performs the reverse
operation of Decoder. It has maximum of 2" input lines and ‘n’ output

113

IFT 211 DIGITAL AND LOGIC DESIGN

lines. It will produce a binary code equivalent to the input, which is active
High. Therefore, the encoder encodes 2" input lines with ‘n’ bits. It is
optional to represent the enable signal in encoders.

4 to 2 Encoder

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Yo and two outputs A; &
Ao. The block diagram of 4 to 2 Encoder is shown in the following
figure.

Y3 —
Y, —| 42 [>A
v, — Encoder L—— 4,
Yo —>

At any time, only one of these 4 inputs can be ‘1’ in order to get the
respective binary code at the output. The Truth table of 4 to 2 encoder is
shown below.

Inputs Outputs

Y3 Y2 Y1 Yo A1 Ao
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

From Truth table, we can write the Boolean functions for each output as
Ai=Y3+Y;

Ao=Y3z+Y;

We can implement the above two Boolean functions by using two input
OR gates. The circuit diagram of 4 to 2 encoder is shown in the
following figure.

114

Y1

The above circuit diagram contains two OR gates. These OR gates encode
the four inputs with two bits

Octal to Binary Encoder

Octal to binary Encoder has eight inputs, Y7 to Yo and three outputs A,
A1 & Ao. Octal to binary encoder is nothing but 8 to 3 encoder. The block
diagram of octal to binary Encoder is shown in the following figure.

At any time, only one of these eight inputs can be ‘1’ in order to get the
respective binary code. The Truth table of octal to binary encoder is
shown below

Y7 —>
Yo =
; Octal pF—— A
Y5 —>
to A
Yg = ki
Binary
Y3 = —> Aj
Y, —>{ Encoder
Y{ =—>
Yo =—>

115

IFT 211 DIGITAL AND LOGIC DESIGN

From Truth table, we can write the Boolean functions for each output as

Inputs Outputs

[N

R|O|IO|0O|0 0|00 |<L
~
O RO o000 |0oL
(2]

(ellal] Jlella]ie]le)a)itg
o

OOOI—‘OOOO-<
N

O 000k Oo|o(K
w

o000 o|r|o|o|<L
N

o000 o|o|r|Oo|L

O 000|000
o
I—‘l—‘l—‘l—‘OOOO}
S

PP olo|k|k|lolo|>
=
ok oo |o|>
o

A2=Y7+ Y+ Ys+ Yy

Ai=Y7+Ys+ Y3+ Y,

Ao=Y7+Y5+Ys+Y:

We can implement the above Boolean functions by using four input OR
gates. The circuit diagram of octal to binary encoder is shown in the
following figure

Y7
Ye
Ys
Yq

Ag

Y1

The above circuit diagram contains three 4-input OR gates. These OR
gates encode the eight inputs with three bits.

Drawbacks of Encoder

Following are the drawbacks of normal encoder.

. There is an ambiguity, when all outputs of encoder are equal to
zero. Because, it could be the code corresponding to the inputs, when only
least significant input is one or when all inputs are zero.

. If more than one input is active High, then the encoder produces
an output, which may not be the correct code. For example, if both Y3 and
Ye are ‘1°, then the encoder produces 111 at the output. This is neither

116

equivalent code corresponding to Y3, when it is ‘1’ nor the equivalent
code corresponding to Ye, when it is ‘1°.

So, to overcome these difficulties, we should assign priorities to each
input of encoder. Then, the output of encoder will be the binary code
corresponding to the active High inputs, which has higher priority. This
encoder is called as priority encoder.

Priority Encoder

A 4 1o 2 priority encoder has four inputs Y3, Y2, Y1 & Yo and two outputs
A1 & Ao. Here, the input, Y3 has the highest priority, whereas the input,
Yo has the lowest priority. In this case, even if more than one input is ‘1’
at the same time, the output will be the binary code corresponding to the
input, which is having higher priority.

We considered one more output, V in order to know, whether the code
available at outputs is valid or not.

. If at least one input of the encoder is ‘1°, then the code available at
outputs is a valid one. In this case, the output, V will be equal to 1.
. If all the inputs of encoder are ‘0’, then the code available at

outputs is not a valid one. In this case, the output, V will be equal to 0.

The Truth table of 4 to 2 priority encoder is shown below.

Inputs Outputs

Y3 Y2 Y1 Yo Aq Ao V
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1

117

IFT 211 DIGITAL AND LOGIC DESIGN

Use 4 variable K-maps for getting simplified expressions for each
output.

K-Map for Ay K-Map for Ag
Y1Yo Y1Yg
Y3Y, \ 00 01 11 10 vav, L oL it f0]
00 00 111Y2 VY1

otfft [1 [t f2]f...y, o1

1t [1]1]1 1|t |1 1] tfhYs

il |3 |'L | =Y ot |1 11]1

The simplified Boolean functions are

A1=Y3+Y>

Ao=Ys+ YoV

Similarly, we will get the Boolean function of output, V as
V=Ys+Y2+Y1+ Yo

We can implement the above Boolean functions using logic gates.
The circuit diagram of 4 to 2 priority encoder is shown in the following
figure.

.) O—-
10 >—

Yo

The above circuit diagram contains two 2-input OR gates, one 4-input OR
gate, one 2input AND gate & an inverter. Here AND gate & inverter
combination are used for producing a valid code at the outputs, even when

118

multiple inputs are equal to ‘1’ at the same time. Hence, this circuit
encodes the four inputs with two bits based on the priority assigned to
each input.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of an encoder in digital circuits?
A. To decode binary inputs

B. To convert binary to decimal

C. To generate a binary code from active input lines

D. To store binary data
Answer: C
Explanation: An encoder converts active High input signals into a binary
code.

2. How many outputs does a 4-to-2 encoder produce?

A 2

B. 4

C. 8

D. 1

Answer: A
Explanation: A 4-to-2 encoder has 4 inputs and produces 2 output bits.
3. What is the Boolean expression for output Al in a 4-to-2
encoder?

A. Y3+Y1

B. Y3+Y2

C. Y2+Y1

D. Y3 + YO0
Answer: B
Explanation: A1=Y3 + Y2

4, How many inputs does an octal-to-binary encoder have?

A. 4

B. 8

C. 2

D. 16

Answer: B
Explanation: An octal-to-binary encoder has 8 inputs and 3 outputs.

5. What is the Boolean expression for output AO in an octal-to-

binary encoder?

A. Y7+Y5+Y3+Y1
B. Y7+Y6+Y3+Y2
C. Y7+Y6+Y5+Y4

D. Y7 + Y5 + Y2 + YO
Answer: A
Explanation: AO=Y7+Y5+Y3+Yl1l

6. What is a major drawback of a normal encoder?

119

IFT 211 DIGITAL AND LOGIC DESIGN

A. It requires too many gates

B. It cannot handle decimal inputs

C. It produces ambiguous output when multiple inputs are active

D. It consumes high power
Answer: C

Explanation: Normal encoders can produce incorrect outputs if more
than one input is active.

7. What is the solution to the ambiguity in normal encoders?

A. Use more gates

B. Use a decoder instead

C. Assign priorities to inputs

D. Increase the number of outputs
Answer: C
Explanation: Priority encoders resolve ambiguity by assigning priority
to inputs.

8. In a 4-to-2 priority encoder, which input has the highest
priority?

A YO

B. Y1l

C. Y2

D. Y3

Answer: D
Explanation: Y3 has the highest priority.

9. What does the output V represent in a priority encoder?

A. Voltage level

B. Validity of the output code

C. Number of active inputs

D. Enable signal
Answer: B
Explanation: V indicates whether the output code is valid.

10. What is the Boolean expression for output AO in a priority
encoder?

A. Y3+Y2

B. Y3+Y2'Y1

C. Y2+VY1

D. Y3 + Y1
Answer: B

Explanation: AO=Y3 +Y2'Y1

Fill in the Blank Questions

1. An encoder converts active High inputs into a code.
Answer: binary

2. A 4-t0-2 encoder has inputs and 2 outputs.
Answer: 4

120

3. The Boolean expression for output A2 in an octal-to-binary
encoder IS

Answer: Y7+Y6+Y5+Y4

4. A priority encoder resolves ambiguity by assigning to
inputs.

Answer: priority

5. The output V in a priority encoder indicates whether the output is

Answer: valid

121

IFT 211 DIGITAL AND LOGIC DESIGN

Unit 7; Latches

There are two types of memory elements based on the type of triggering
that is suitable to operate it.

. Latches

. Flip-flops

Latches operate with enable signal, which is level sensitive. Whereas,
flip-flops are edge sensitive. We will discuss about flip-flops in next
lecture. Now, let us discuss about SR Latch & D Latch one by one.

SR Latch

SR Latch is also called as Set Reset Latch. This latch affects the outputs
as long as the enable, E is maintained at ‘1°. The circuit diagram of SR
Latch is shown

in the following figure.

)
|/

R

Q(t)

ﬁ | Q(t)
|

This circuit has two inputs S & R and two outputs Qt & Qt’. The upper
NOR gate has two inputs R & complement of present state, Qt’ and
produces next state, Qt + 1 when enable, E is ‘1°.

Similarly, the lower NOR gate has two inputs S & present state, Qt and
produces complement of next state, Qt + 1 when enable, E is ‘1°.

We know that a 2-input NOR gate produces an output, which is the
complement of another input when one of the input is ‘0’. Similarly, it
produces ‘0’ output, when one of the input is “1°.

. If S = 1, then next state Qt + 1 will be equal to ‘1’ irrespective of
present state, Qt values.
. If R = 1, then next state Qt + 1 will be equal to ‘0’ irrespective of

present state, Qt values.

At any time, only of those two inputs should be ‘1°. If both inputs are “1°,
then the next state Qt + 1 value is undefined.

The following table shows the state table of SR latch.

122

Qt+1
Qt

R
0
1
0
1

Rl RR, O O WnW

Therefore, SR Latch performs three types of functions such as Hold, Set
& Reset based on the input conditions.

D Latch

There is one drawback of SR Latch. That is the next state value can’t be
predicted when both the inputs S & R are one. So, we can overcome this
difficulty by D Latch. It is also called as Data Latch. The circuit
diagram of D Latch is shown in the following figure.

This circuit has single input D and two outputs Qt & Qt’. D Latch is
obtained from SR Latch by placing an inverter between S amp;& R inputs
and connect D input to S. That means we eliminated the combinations of

=\
st

Q(t)

N

E —

_\ Q)
: | ¥

S & R are of same value.

. IfD=0— S=0& R =1, then next state Qt + 1 will be equal to
‘0’ irrespective of present state, Qt values. This is corresponding to the
second row of SR Latch state table.

. IfD=1—- S=1& R =0, then next state Qt + 1 will be equal to
‘1’ irrespective of present state, Qt values. This is corresponding to the
third row of SR Latch state table.

The following table shows the state table of D latch.

Qt+1
0
1 1

Therefore, D Latch Hold the information that is available on data input,
D. That means the output of D Latch is sensitive to the changes in the
input, D as long as the enable is High.

123

IFT 211 DIGITAL AND LOGIC DESIGN

In this chapter, we implemented various Latches by providing the cross
coupling between NOR gates. Similarly, you can implement these
Latches using NAND gates.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What distinguishes latches from flip-flops in terms of
triggering?

A. Latches are edge-triggered

B. Flip-flops are level-sensitive

C. Latches are level-sensitive
D. Flip-flops use enable signals
Answer: C

Explanation: Latches respond to the level of the enable signal, while flip-
flops respond to clock edges.

2. What does SR in SR Latch stand for?

A. Set and Reset

B. Store and Retrieve

C. Signal and Response

D. Start and Run
Answer: A
Explanation: SR stands for Set and Reset, the two control inputs of the
latch.

3. What happens when both S and R inputs are 1 in an SR Latch?
A. Outputis 1

B. Output is 0

C. Output holds previous state

D. Output IS undefined
Answer: D
Explanation: When both inputs are 1, the output becomes unpredictable
or undefined.

4, What is the function of the enable signal in a latch?

A. It resets the latch

B. It stores the output

C. It allows the latch to respond to inputs

D. It disables the circuit
Answer: C

Explanation: The latch responds to input changes only when the enable
signal is high.

5. Which logic gate is wused in the basic SR Latch
implementation?

A. AND

B. OR

C. NOR

D. XOR

Answer: C

124

Explanation: SR Latches are commonly implemented using cross-
coupled NOR gates.
6. What is the main drawback of the SR Latch?

A. It consumes too much power

B. It cannot store data

C. It has an undefined state when both inputs are 1

D. It requires a clock signal
Answer: C

Explanation: The SR Latch becomes unstable when both S and R are 1.
7. How does the D Latch resolve the SR Latch’s drawback?

A. By using flip-flops

B. By removing the enable signal

C. By ensuring S and R are never both 1

D. By adding a clock input
Answer: C
Explanation: The D Latch uses an inverter to prevent S and R from being
1 simultaneously.

8. What does the D input in a D Latch represent?

A. Delay

B. Data

C. Drive

D. Direction

Answer: B

Explanation: D stands for Data, which is stored when the latch is
enabled.
9. What is the output of a D Latch when D = 1 and enable is high?
A. 0

B. 1

C. Undefined

D. Previous state
Answer: B

Explanation: The output follows the input D when enabled.

10. Which gates can also be used to implement latches besides
NOR gates?

A. XOR gates

B. NAND gates

C. AND gates

D. OR gates
Answer: B
Explanation: Latches can also be implemented using NAND gates.

Fill in the Blank Questions

1. Latches are sensitive, while flip-flops are edge
sensitive.

Answer: level

125

IFT 211 DIGITAL AND LOGIC DESIGN

2. The SR Latch has two inputs: and Reset.

Answer: Set

3. When both S and R are 1, the SR Latch output is

Answer: undefined

4, The D Latch eliminates the undefined state by using an
between S and R inputs.

Answer: inverter

5. The output of a D Latch follows the input D when the

signal IS high.

Answer: enable

126

Unit 8 Flip-Flops

Previously, we discussed about Latches. Those are the basic building
blocks of flip-flops. We can implement flip-flops in two methods.

In first method, cascade two latches in such a way that the first latch is
enabled for every positive clock pulse and second latch is enabled for
every negative clock pulse. So that the combination of these two latches
become a flip-flop.

In second method, we can directly implement the flip-flop, which is edge
sensitive. In this chapter, let us discuss the following flip-flops using
second method.

. SR Flip-Flop

. D Flip-Flop

. JK Flip-Flop

. T Flip-Flop

SR Flip-Flop

SR flip-flop operates with only positive clock transitions or negative
clock transitions. Whereas, SR latch operates with enable signal.
The circuit diagram of SR flip-flop is shown in the following figure.

This circuit has two inputs S & R and two outputs Qt & Qt’. The operation

R

v

) Q(t)

Clk

S

W Q(t)
.

of SR flipflop is similar to SR Latch. But, this flip-flop affects the outputs
only when positive transition of the clock signal is applied instead of
active enable.

The following table shows the state table of SR flip-flop.

S R Qt+1

Qt

0
0
1
1

| Ol | O

Here, Qt & Qt+1 are present state & next state respectively. So, SR flip-
flop can be used for one of these three functions such as Hold, Reset &

127

IFT 211 DIGITAL AND LOGIC DESIGN

Set based on the input conditions, when positive transition of clock signal
is applied. The following table shows the characteristic table of SR flip-
flop.

Present Inputs Present State Next State

S R Qt+1

Q

Pl PP PO OOl O
P ROl O|lkF| k| Ol O
| Ol k| Ok O| kL O
X| X, P, O O| | O

By using three variable K-Map, we can get the simplified expression for
next state, Qt + 1. The three variable K-Map for next state, Qt + 1is
shown in the following figure.

The maximum possible groupings of adjacent ones are already shown in

RQ(t)
g\ 00 01 11 10

0 1]
1 i 1 X YEL o S
RQ(t)

the figure. Therefore, the simplified expression for next state Qt + 1 is

Q(t+1)=S+R'Q()
D Flip-Flop

128

D flip-flop operates with only positive clock transitions or negative clock
transitions. Whereas, D latch operates with enable signal. That means, the
output of D flip-flop is insensitive to the changes in the input, D except
for active transition of the clock signal. The circuit diagram of D flip-
flop is shown in the following figure.

A

Clk —

D

This circuit has single input D and two outputs Qt & Qt’. The operation
of D flip-flop is similar to D Latch. But, this flip-flop affects the outputs
only when positive transition of the clock signal is applied instead of
active enable.

The following table shows the state table of D flip-flop.

D Qt+1
0 0
1 1

Therefore, D flip-flop always Hold the information, which is available on
data input, D of earlier positive transition of clock signal. From the above
state table, we can directly write the next state equation as

Qt+1=D

Next state of D flip-flop is always equal to data input, D for every positive
transition of the clock signal. Hence, D flip-flops can be used in
registers, shift registers and some of the counters.

JK Flip-Flop

JK flip-flop is the modified version of SR flip-flop. It operates with only
positive clock transitions or negative clock transitions. The circuit
diagram of JK flip-flop is shown in the following figure.

This circuit has two inputs J & K and two outputs Qt & Qt’. The operation
of JK flip-flop is similar to SR flip-flop. Here, we considered the inputs
of SR flip-flop as S = J Qt” and R = KQt in order to utilize the modified
SR flip-flop for 4 combinations of inputs.

129

IFT 211 DIGITAL AND LOGIC DESIGN

ey
|

<

J __X — Q(t)
1/

The following table shows the state table of JK flip-flop.

— Q(t)

J K Qt+1
0 0 Qt

0 1

1 0 1

1 1 Qt

Here, Qt & Qt + 1 are present state & next state respectively. So, JK flip-
flop can be used for one of these four functions such as Hold, Reset, Set
& Complement of present state based on the input conditions, when
positive transition of clock signal is applied. The following table shows
the characteristic table of JK flip-flop.

Present Inputs Present State Next State
J K Qt Qt+1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

130

By using three variable K-Map, we can get the simplified expression for
next state, Qt + 1. Three variable K-Map for next state, Qt + 1 is shown
in the following figure.

The maximum possible groupings of adjacent ones are already shown in

KQ(E)
3\ 00 0t 11 10

o [
11m 1‘

KQt) 1Q(t)
the figure. Therefore, the simplified expression for next state Qt + 1 is

Q(t+1)=JQ 1) +K'Q (Y

T Flip-Flop

T flip-flop is the simplified version of JK flip-flop. It is obtained by
connecting the same input ‘T’ to both inputs of JK flip-flop. It operates
with only positive clock transitions or negative clock transitions.
The circuit diagram of T flip-flop is shown in the following figure

i

o e

-

This circuit has single input T and two outputs Qt & Qt’. The operation
of T flip-flop is same as that of JK flip-flop. Here, we considered the
inputs of JK flip-flopas J =T and K = T in order to utilize the modified
JK flip-flop for 2 combinations of inputs. So, we eliminated the other two

131

IFT 211 DIGITAL AND LOGIC DESIGN

combinations of J & K, for which those two values are complement to
each other in T flip-flop.
The following table shows the state table of T flip-flop.

D Qt+1
0 Qt
1 Qt’

Here, Qt & Qt + 1 are present state & next state respectively. So, T flip-
flop can be used for one of these two functions such as Hold, &
Complement of present state based on the input conditions, when positive
transition of clock signal is applied. The following table shows
the characteristic table of T flip-flop.

Inputs Present State Next State
T Qt Qt+1

0 0 0

0 1 1

1 0 1

1 1 0

From the above characteristic table, we can directly write the next state
equation as

Q(t+1)=TQ(t) +TQ (1)

=Qt+1)=TDQ()

The output of T flip-flop always toggles for every positive transition of
the clock signal, when input T remains at logic High 11. Hence, T flip-
flop can be used in counters.

In this chapter, we implemented various flip-flops by providing the cross
coupling between NOR gates. Similarly, you can implement these flip-
flops by using NAND gates.

Tutor Marked Assignment

1. Design a counter with sequences 0, 2, 3, 1, 0 using D-flip flops.

2. If both S and R inputs of an SR latch formed by cross-coupling
two NOR gates are set to 0, the output is?

3. A MOD-16 ripple counter using J-K flip-flop has a current state
1001. What will the state be after 31 clock pulses?

4, A specific counter is using five S-R flip-flops. So what is the
maximum number of states possible?

5. What is the maximum delay that can occur if four flip-flops are
connected as a ripple counter and each flip-flop has propagation delays of
teue = 22 ns and tp .y = 15 ns?

132

SELF-ASSSESMENT EXERCISES

Multiple Choice Questions (MCQs)

What distinguishes flip-flops from latches?

Flip-flops are level-sensitive

Flip-flops are edge-sensitive

Flip-flops use enable signals

Flip-flops operate without clock signals

ocompr

E. Answer: B
Explanation: Flip-flops respond to clock edges, unlike latches which are
level-sensitive.

2. Which flip-flop is a modified version of the SR flip-flop?

A. D flip-flop

B. T flip-flop

C. JK flip-flop

D. Master-slave flip-flop
Answer: C

Explanation: JK flip-flop is derived from the SR flip-flop with added
logic to handle all input combinations.

3. What is the next state equation for a D flip-flop?

A. Qt+1=D

B. Qt+1=D’

C. Qt+1=0Qt

D. Ot + 1 = D D Qt

E. Answer: A

Explanation: The next state of a D flip-flop is equal to the input D at the
clock edge.

4, What happens when both inputs of an SR flip-flop are 1?

A. Outputis 0

B. Outputis 1

C. Output toggles

D. Output IS undefined
Answer: D
Explanation: The SR flip-flop enters an undefined state when both S and
R are 1.

5. Which flip-flop toggles its output on every clock edge when

input is high?

A. SR flip-flop

B. D flip-flop

C. T flip-flop

D. JK flip-flop
Answer: C

133

IFT 211 DIGITAL AND LOGIC DESIGN

Explanation: T flip-flop toggles its output when T = 1 and a clock edge
occurs.

6. What is the next state equation for a JK flip-flop?

A, Qt+1=J+K’

B. Qt+1=1JQt' +K'Qt

C. Qt+1=JQt+KQt

D. Qt + 1 = J &>, K
Answer: B
Explanation: This equation accounts for all input combinations and
toggling behavior.

7. Which flip-flop is derived by connecting the same input to both
J and K of a JK flip-flop?

A. SR flip-flop

B. D flip-flop
C. T flip-flop
D. Master-slave flip-flop
Answer: C

Explanation: T flip-flop is formed by tying J and K together.
8. What is the next state equation for a T flip-flop?

A. Qt+1=T

B. Qt+1=T'Qt+ TQt

C. Qt+1=T6& Qt

D. Qt + 1 = Qt
Answer: C
Explanation: The output toggles when T is high, represented by the XOR
operation.

9. Which flip-flop is best suited for use in counters?

A. SR flip-flop

B. D flip-flop

C. T flip-flop

D. JK flip-flop
Answer: C

Explanation: T flip-flops toggle on each clock pulse, making them ideal
for counting.

10. What logic gates can be used to implement flip-flops besides
NOR gates?

A. XOR gates

B. NAND gates

C. AND gates

D. OR gates
Answer: B
Explanation: Flip-flops can also be constructed using NAND gates.

134

Fill in the Blank Questions

1. Flip-flops are sensitive, responding to clock
transitions.

Answer: edge

2. The SR flip-flop enters an state when both S and R
are 1.

Answer: undefined

3. The next state of a D flip-flop is equal to the input
Answer: D

4. The T flip-flop toggles its output when input T is
Answer: high

5. The next state equation for a T flip-flop is Q(t + 1) =
Answer: T @ Q(t)

135

IFT 211 DIGITAL AND LOGIC DESIGN

Module 4 Sequential Circuits

Unit 1 Sequential Circuits

Unit 2 Conversion of Flip-Flops
Unit 3 Registers

Unit 4 Counters

Unit 1: Sequential Circuits

We discussed various combinational circuits in earlier chapters. All these
circuits have a set of outputs, which depends only on the combination of
present inputs. The following figure shows the block diagram of
sequential circuit.

Combinational

Circuit

Inputs |:> :{> Outputs
=

Memory <}:/
m—

Elements

This sequential circuit contains a set of inputs and outputs. The outputs of
sequential circuit depends not only on the combination of present inputs
but also on the previous outputs. Previous output is nothing but
the present state. Therefore, sequential circuits contain combinational
circuits along with memory storage elements. Some sequential circuits
may not contain combinational circuits, but only memory elements.
Following table shows the differences between combinational circuits
and sequential circuits.

136

Combinational Circuits Sequential Circuits

Outputs depend only on | Outputs depend on both present inputs
present inputs. and present state.
Feedback path is not present. | Feedback path is present.

Memory elements are not | Memory elements are required.
required.
Clock signal is not required. | Clock signal is required.

Easy to design. Difficult to design.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What distinguishes sequential circuits from combinational
circuits?

A. They use only logic gates

B. Their outputs depend only on current inputs

C. Their outputs depend on current inputs and previous states

D. They do not require memory
Answer: C
Explanation: Sequential circuits consider both present inputs and stored
previous outputs.

2. Which of the following is NOT a feature of combinational
circuits?

A. No feedback path

B. No memory elements

C. Clock signal required

D. Outputs depend only on present inputs
Answer: C
Explanation: Combinational circuits do not require a clock signal.

3. What is the role of memory elements in sequential circuits?

A. To store binary numbers

B. To hold previous output states

C. To convert analog signals

D. To generate clock pulses
Answer: B
Explanation: Memory elements store the present state, which influences
future outputs.

4, Which type of circuit includes a feedback path?

A. Combinational circuit

B. Arithmetic circuit

C. Sequential circuit

D. Decoder circuit
Answer: C
Explanation: Feedback paths are a defining feature of sequential circuits.

137

IFT 211 DIGITAL AND LOGIC DESIGN

5. Which of the following is required for the operation of
sequential circuits?

A. Voltage regulator

B. Clock signal

C. Amplifier
D. Comparator
Answer: B

Explanation: Sequential circuits rely on clock signals to synchronize
state changes.

6. Which circuit type is generally easier to design?

A. Sequential

B. Combinational

C. Analog
D. Hybrid
Answer: B

Explanation: Combinational circuits are simpler because they don’t
involve memory or timing.

7. What does the present state in a sequential circuit refer to?

A. The current input

B. The output of the last clock cycle

C. The voltage level

D. The logic gate used
Answer: B
Explanation: Present state is the stored output from the previous cycle.
8. Which of the following is NOT typically found in a sequential
circuit?

A. Memory elements

B. Feedback paths

C. Clock signal

D. Only logic gates
Answer: D
Explanation: Sequential circuits include more than just logic gates—they
also have memory and timing components.

9. Which statement is true about combinational circuits?

A. They require a clock signal

B. They store previous outputs

C. They are difficult to design

D. Their outputs depend only on current inputs
Answer: D
Explanation: Combinational circuits produce outputs based solely on
current inputs.

10. What type of circuit is used when output must reflect both
current input and history?

A. Decoder

B. Combinational

C. Sequential

138

D. Multiplexer

Answer: C
Explanation: Sequential circuits incorporate memory to reflect history in
their outputs.

Fill in the Blank Questions

1. Sequential circuits require elements to store previous

outputs.

Answer: memory

2. Combinational circuits do not include a path.

Answer: feedback

3. The output of a sequential circuit depends on present inputs and
state.

Answer: present

4, Sequential circuits are to design compared to

combinational circuits.

Answer: difficult

5. A signal is necessary for the operation of sequential

circuits.

Answer: clock

139

IFT 211 DIGITAL AND LOGIC DESIGN

Unit 2 Conversion of Flip-Flops

In previous lectures, we discussed the four flip-flops, namely SR flip-flop,
D flip-flop, JK flip-flop & T flip-flop. We can convert one flip-flop into
the remaining three flip-flops by including some additional logic. So,
there will be total of twelve flip-flop conversions.

Follow these steps for converting one flip-flop to the other.

. Consider the characteristic table of desired flip-flop.

. Fill the excitation values inputs of given flip-flop for each
combination of present state and next state. The excitation table for all
flip-flops is shown below.

. Get the simplified expressions for each excitation input. If
necessary, use Kmaps for simplifying.

Present |Next |SR flip- | D flip- |JK flip- | T flip-
State State | flop inputs | flop flop inputs | flop
input input

Qt Qt+1 |S R D J K T

0 0 0 X 0 0 X 0

0 1 1 0 1 1 X 1

1 0 0 1 0 X 1 1

1 1 X 0 1 X 0 0

. Draw the circuit diagram of desired flip-flop according to the

simplified expressions using given flip-flop and necessary logic gates.
Now, let us convert few flip-flops into other. Follow the same process for
remaining flipflop conversions.

SR Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of SR flip-flop to other flip-
flops.

. SR flip-flop to D flip-flop

. SR flip-flop to JK flip-flop

. SR flip-flop to T flip-flop

SR flip-flop to D flip-flop conversion

Here, the given flip-flop is SR flip-flop and the desired flip-flop is D flip-
flop. Therefore, consider the following characteristic table of D flip-
flop.

D flip-flop input Present State Next State
D Qt Qt+1

0 0 0

0 1 0

1 0 1

1 1 1

140

D flip-flop | Present State | Next State | SR flip-flop
input inputs

D Qt Qt+1 S R
0 0 0 0 X
0 1 0 0 1
1 0 1 1 0
1 1 1 X 0

We know that SR flip-flop has two inputs S & R. So, write down the
excitation values of SR flip-flop for each combination of present state and
next state values. The following table shows the characteristic table of D
flip-flop along with the excitation inputs of SR flip-flop.

From the above table, we can write the Boolean functions for each input

as below.
S=my+ds
R=mi+do

We can use 2 variable K-Maps for getting simplified expressions for these
inputs. The k-Maps for S & R are shown below.

K-Map for S
Q(t)
o\ 0 1
0
1 XD

K-Map for R
Q(t)
D 1
0 1
1

So, we got S = D & R = D' after simplifying. The circuit diagram of D
flip-flop is shown in the following figure.

141

IFT 211 DIGITAL AND LOGIC DESIGN

This circuit consists of SR flip-flop and an inverter. This inverter
produces an output, which is complement of input, D. So, the overall
circuit has single input, D and two outputs Qt & Qt'. Hence, it is a D flip-
flop. Similarly, you can do other two conversions.

SR

EY °> Flip-Flop
" | H— Q'

D Flip-Flop

..........................

clk

D Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of D flip-flop to other flip-
flops.

. D flip-flop to T flip-flop

. D flip-flop to SR flip-flop

. D flip-flop to JK flip-flop

D flip-flop to T flip-flop conversion

Here, the given flip-flop is D flip-flop and the desired flip-flop is T flip-
flop. Therefore, consider the following characteristic table of T flip-
flop.

T flip-flop input Present State Next State
T Qt Qt+1

0 0 0

0 1 1

1 0 1

1 1 0

T flip-flop input | Present State | Next State | D flip-flop input

T Qt Qt+1 D

142

We know |0 0 0 0
that D flip-

flop has 0 1 1 1
single input

D. So, write
down the

excitation
values of D
flip-flop for

each combination of present state and next state values. The following
table shows the characteristic table of T flip-flop along with
the excitation input of D flip-flop.

From the above table, we can directly write the Boolean function of D as
below.

D=T&®Q({)

So, we require a two input Exclusive-OR gate along with D flip-flop.
The circuit diagram of T flip-flop is shown in the following figure.

Flip-Flop

clk

This circuit consists of D flip-flop and an Exclusive-OR gate. This
Exclusive-OR gate produces an output, which is Ex-OR of T and Qt. So,
the overall circuit has single input, T and two outputs Qt & Qt’. Hence, it
isa T flip-flop. Similarly, you can do other two conversions.

JK Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of JK flip-flop to other flip-
flops.

. JK flip-flop to T flip-flop

. JK flip-flop to D flip-flop

. JK flip-flop to SR flip-flop

JK flip-flop to T flip-flop conversion

143

IFT 211 DIGITAL AND LOGIC DESIGN

Here, the given flip-flop is JK flip-flop and the desired flip-flop is T flip-
flop. Therefore, consider the following characteristic table of T flip-
flop.

T flip-flop input Present State Next State
T Qt Qt+1

0 0 0

0 1 1

1 0 1

1 1 0

We know that JK flip-flop has two inputs J & K. So, write down the
excitation values of JK flip-flop for each combination of present state and
next state values. The following table shows the characteristic table of T

flip-flop along with the excitation inputs of JK flipflop.

T flip-flop input | Present State | Next State | JK flip-flop inputs
T Qt Qt+1 J K
0 0 0 0 X
0 1 1 X 0
1 0 1 1 X
1 1 0 X 1

From the above table, we can write the Boolean functions for each input
as below.

J=mz+d; +ds

K=ms+do+d

We can use 2 variable K-Maps for getting simplified expressions for these
two inputs. The k-Maps for J & K are shown below.

K-Map for J K-Map for K
Q(t) Q(t)
T\ 0 1 T\ 0 !
0 X 0 [x
T[T [xtp T fx [LT

144

So, we got, J = T & K =T after simplifying. The circuit diagram of T
flip-flop is shown in the following figure.
This circuit consists of JK flip-flop only. It doesn’t require any other

T — : —— Q[t)
I JK I
: > Flip-Flop :
7 L= - Qy
T Flip-Flop !

clk

gates. Just connect the same input T to both J & K. So, the overall circuit
has single input, T and two outputs Qt & Qt’. Hence, it is a T flip-flop.
Similarly, you can do other two conversions.

T Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of T flip-flop to other flip-
flops.

. T flip-flop to D flip-flop

. T flip-flop to SR flip-flop

. T flip-flop to JK flip-flop

T flip-flop to D flip-flop conversion

Here, the given flip-flop is T flip-flop and the desired flip-flop is D flip-
flop. Therefore, consider the characteristic table of D flip-flop and write
down the excitation values of T flip-flop for each combination of present
state and next state values. The following table shows the characteristic
table of D flip-flop

along with the excitation input of T flip-flop.

D flip-flop input | Present State | Next State | T flip-flop input
D Qt Qt+1 T
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

From the above table, we can directly write the Boolean function of T as
below.

T=D&®Q({)

So, we require a two input Exclusive-OR gate along with T flip-flop.
The circuit diagram of D flip-flop is shown in the following figure.

145

IFT 211

DIGITAL AND LOGIC DESIGN

: ! L Qi)
D— T :
E > Flip-Flop .
A Q)
D Flip-Flop | :

This circuit consists of T flip-flop and an Exclusive-OR gate. This
Exclusive-OR gate produces an output, which is Ex-OR of D and Qt. So,
the overall circuit has single input, D and two outputs Qt & Qt’. Hence, it
is a D flip-flop. Similarly, you can do other two conversions.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

1.
ones?

>PUNOUOWPRPOOWPLWOOWPNUOD P

146

What distinguishes sequential logic circuits from combinational

They use only AND gates

Their output depends on current inputs and past states
They do not use memory

They operate randomly

Which of the following is a basic sequential circuit?
Multiplexer

Decoder

Flip-flop

Comparator

What is the main function of a flip-flop?

To perform arithmetic

To store a single bit of data

To decode signals

To compare inputs

Which flip-flop has a toggle feature?

SR

K 9

D

T

What does the clock signal do in sequential circuits?
It powers the circuit

It synchronizes changes in state

It stores data

It resets the system

Which flip-flop is commonly used for data storage?
T

D

JK

SR

What is the output of a T flip-flop when the input is 1?
No change

Toggle

Reset

Set

Which of the following is a type of sequential circuit?
Full adder

Counter

Multiplexer

Decoder

What is the function of a register in sequential logic?
To perform logic operations

To store multiple bits of data

To decode signals

To compare inputs

Which flip-flop is known for its simplicity and direct data input?
JK

D

T

SR

OOWPEUOWPOLUOTPRUOWPNTDOWPOUOD

Fill in the Blank Questions

1. Sequential circuits depend on current inputs and

states. — past

2. A stores a single bit of data. — flip-flop

3. The signal synchronizes changes in sequential
circuits. — clock

4, A is used to store multiple bits of data. — register

5. The flip-flop toggles its output when the input is 1.
- T

147

IFT 211 DIGITAL AND LOGIC DESIGN

Unit 3 Registers
Shift Register

We know that one flip-flop can store one-bit of information. In order to
store multiple bits of information, we require multiple flip-flops. The
group of flip-flops, which are used to hold store the binary data is known
as register.

If the register is capable of shifting bits either towards right hand side or
towards left hand side is known as shift register. An ‘N’ bit shift register
contains ‘N’ flip-flops. Following are the four types of shift registers
based on applying inputs and accessing of outputs.

. Serial In — Serial Out shift register

. Serial In — Parallel Out shift register

. Parallel In — Serial Out shift register

. Parallel In — Parallel Out shift register

Serial In — Serial Out SISO Shift Register

The shift register, which allows serial input and produces serial output is
known as Serial In — Serial Out SISO shift register. The block
diagram of 3-bit SISO shift register is shown in the following figure.

Serial | D, Q D, Q D; Q0 Serial
Input Output
D D D

Flip-Flo Flip-Flo Flip-Flo
> p-riop > p-riop > p=riop

clk

This block diagram consists of three D flip-flops, which are cascaded.
That means, output of one D flip-flop is connected as the input of next D
flip-flop. All these flip-flops are synchronous with each other since, the
same clock signal is applied to each one.

In this shift register, we can send the bits serially from the input of left

most D flip-flop. Hence, this input is also called as serial input. For every
positive edge triggering of clock signal, the data shifts from one stage to

148

the next. So, we can receive the bits serially from the output of right most
D flip-flop. Hence, this output is also called as serial output.

Example

Let us see the working of 3-bit SISO shift register by sending the binary
information “011” from LSB to MSB serially at the input.

Assume, initial status of the D flip-flops from leftmost to rightmost
is Q2Q1Qo = 000. We can understand the working of 3-bit SISO shift
register from the following table.

No of positive edge | Serial Input Q2 Q1 | Qo

of Clock

0 - 0 0 0

1 1LSB 1 0 0

2 1 1 1 0

3 OMSB 0 1 1LSB
4 - - 0 1

5 - - - oOMSB

The initial status of the D flip-flops in the absence of clock signal
IS Q2Q1Qo = 000. Here, the serial output is coming from Qo. So, the
LSB 1 is received at 3" positive edge of clock and the MSB 0 is received
at 5™ positive edge of clock.

Therefore, the 3-bit SISO shift register requires five clock pulses in order
to produce the valid output. Similarly, the N-bit SISO shift
register requires 2N-1 clock pulses in order to shift ‘N’ bit information.
Serial In - Parallel Out SIPO Shift Register

The shift register, which allows serial input and produces parallel output
is known as Serial In — Parallel Out SIPO shift register. The block
diagram of 3-bit SIPO shift register is shown in the following figure.

This circuit consists of three D flip-flops, which are cascaded. That

Parallel

| Output

Q

Serial ___| D, Q D, Q Dy
Input
D D D

Flip<Fl lip=Fl Flip-Fl
> Ip-Flop >F|p op > Ip-riop

clk

149

IFT 211 DIGITAL AND LOGIC DESIGN

means, output of one D flip-flop is connected as the input of next D flip-
flop. All these flip-flops are synchronous with each other since, the same
clock signal is applied to each one.

In this shift register, we can send the bits serially from the input of left
most D flip-flop. Hence, this input is also called as serial input. For every
positive edge triggering of clock signal, the data shifts from one stage to
the next. In this case, we can access the outputs of each D flip-flop in
parallel. So, we will get parallel outputs from this shift register.

Example

Let us see the working of 3-bit SIPO shift register by sending the binary
information “011” from LSB to MSB serially at the input.

Assume, initial status of the D flip-flops from leftmost to rightmost
is Q2Q1Qo = 000. Here, Q2 & Qo are MSB & LSB respectively. We can
understand the working of 3-bit SIPO shift register from the following
table.

No of positive | Serial Input Q:MSB Q1 | QuLSB
edge of Clock

0 - 0 0 0

1 1LSB 1 0 0

2 1 1 1 0

3 OMSB 0 1 1

The initial status of the D flip-flops in the absence of clock signal
is Q2Q1Qo = 000. The binary information “011” is obtained in parallel at
the outputs of D flip-flops for third positive edge of clock.

So, the 3-bit SIPO shift register requires three clock pulses in order to
produce the wvalid output. Similarly, the N-bit SIPO shift
register requires N clock pulses in order to shift ‘N’ bit information.

Parallel In — Serial Out PISO Shift Register

The shift register, which allows parallel input and produces serial output
is known as Parallel In — Serial Out PISO shift register. The block
diagram of 3-bit PISO shift register is shown in the following figure.

150

This circuit consists of three D flip-flops, which are cascaded. That
means, output of one D flip-flop is connected as the input of next D flip-

Parallel
Input
Preset
Enable
Pr Pr Pr 4 Serial
D —
D2 Q D1 Q1 0 0 Output
D D D
> Flip-Flop > Flip-Flop > Flip-Flop
clk

flop. All these flip-flops are synchronous with each other since, the same
clock signal is applied to each one.

In this shift register, we can apply the parallel inputs to each D flip-flop
by making Preset Enable to 1. For every positive edge triggering of clock
signal, the data shifts from one stage to the next. So, we will get the serial
output from the right most D flip-flop.

Example

Let us see the working of 3-bit PISO shift register by applying the binary
information “011” in parallel through preset inputs.

Since the preset inputs are applied before positive edge of Clock, the
initial status of the D flip-flops from leftmost to rightmost will be Q2Q1Qo
= 011. We can understand the working of 3-bit PISO shift register from
the following table.

151

IFT 211 DIGITAL AND LOGIC DESIGN

Parallel
Input

Preset

T

Parallel

| < OCutput

S FIipI-DFIop . Flip?l:lop S FIip‘-DFlop
No of positive edge of | Q2 Q1 Qo
Clock
0 0 1 1LSB
1 - 0 1
2 - - 0LSB

Here, the serial output is coming from QO. So, the LSB 11 is received
before applying positive edge of clock and the MSB 00 is received at
2" positive edge of clock.

Therefore, the 3-bit PISO shift register requires two clock pulses in order
to produce the wvalid output. Similarly, the N-bit PISO shift
register requires N-1 clock pulses in order to shift ‘N’ bit information.

Parallel In - Parallel Out PIPO Shift Register

The shift register, which allows parallel input and produces parallel output
is known as Parallel In — Parallel Out PIPO shift register. The block
diagram of 3-bit PIPO shift register is shown in the following figure.
This circuit consists of three D flip-flops, which are cascaded. That
means, output of one D flip-flop is connected as the input of next D flip-
flop. All these flip-flops are synchronous with each other since, the same
clock signal is applied to each one.

In this shift register, we can apply the parallel inputs to each D flip-flop
by making Preset Enable to 1. We can apply the parallel inputs through

152

preset or clear. These two are asynchronous inputs. That means, the flip-
flops produce the corresponding outputs, based on the values of
asynchronous inputs. In this case, the effect of outputs is independent of
clock transition. So, we will get the parallel outputs from each D flip-
flop.

Example

Let us see the working of 3-bit PIPO shift register by applying the binary
information “011” in parallel through preset inputs.

Since the preset inputs are applied before positive edge of Clock, the
initial status of the D flip-flops from leftmost to rightmost will be Q2Q1Qo
= 011. So, the binary information “011” is obtained in parallel at the
outputs of D flip-flops before applying positive edge of clock.

Therefore, the 3-bit PIPO shift register requires zero clock pulses in order
to produce the valid output. Similarly, the N-bit PIPO shift
register doesn’t require any clock pulse in order to shift ‘N’ bit
information.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of a register in digital circuits?
A. To perform arithmetic operations

B. To store multiple bits of binary data

C. To decode binary inputs

D. To generate clock signals
Answer: B
Explanation: Registers are groups of flip-flops used to store binary data.
2. Which type of shift register allows serial input and serial
output?

A. SIPO

B. PISO

C. SISO

D. PIPO

Answer: C
Explanation: SISO stands for Serial In — Serial Out.

3. How many clock pulses are required for a 3-bit SISO shift
register to produce valid output?

A 3

B. 4

C. 5

153

IFT 211 DIGITAL AND LOGIC DESIGN

D. 6

Answer: C
Explanation: A 3-bit SISO shift register requires 2N-1 =5 clock pulses.
4. Which shift register allows serial input and parallel output?
A. SISO

B. SIPO

C. PISO

D. PIPO

Answer: B

Explanation: SIPO stands for Serial In — Parallel Out.
5. How many clock pulses are needed for a 3-bit SIPO shift
register to produce valid output?

A. 2

B. 3

C. 4

D. 5

Answer: B
Explanation: An N-bit SIPO shift register requires N clock pulses.

6. Which shift register allows parallel input and serial output?
A. SISO

B. SIPO

C. PISO

D. PIPO

Answer: C

Explanation: PISO stands for Parallel In — Serial Out.
7. How many clock pulses are needed for a 3-bit PISO shift
register to produce valid output?

A. 2

B. 3

C. 4

D. 5

Answer: A
Explanation: An N-bit PISO shift register requires N-1 clock pulses.

8. Which shift register allows parallel input and parallel output?
A. SISO

B. SIPO

C. PISO

D. PIPO

Answer: D

Explanation: PIPO stands for Parallel In — Parallel Out.

9. What kind of inputs are used in PIPO shift registers to load
data?

A. Serial inputs

B. Clock inputs

C. Asynchronous inputs

154

D. Enable inputs
Answer: C
Explanation: PIPO registers use asynchronous inputs like preset or clear.
10. How many clock pulses are needed for a 3-bit PIPO shift
register to produce valid output?

A. 0

B. 1

C. 2

D. 3

Answer: A
Explanation: PIPO registers produce output immediately without clock
pulses.

Fill in the Blank Questions

1. A shift register uses flip-flops to store multiple bits.
Answer: D

2. The SISO shift register requires clock pulses to shift
N bits.
Answer: 2N-1

3. The SIPO shift register produces output.
Answer: parallel

4, The PISO shift register uses inputs to load data.
Answer: parallel

5. The PIPO shift register uses inputs to load and output
data without clock pulses.

Answer: asynchronous

155

IFT 211 DIGITAL AND LOGIC DESIGN

Unit 4 Counters

In previous lectures, we discussed various shift registers & counters
using D flipflops. Now, let us discuss various counters using T flip-flops.
We know that T flip-flop toggles the output either for every positive edge
of clock signal or for negative edge of clock signal.

An ‘N’ bit binary counter consists of ‘N’ T flip-flops. If the counter counts
from 0 to 2N — 1, then it is called as binary up counter. Similarly, if the
counter counts down from 2¥ — 1 to 0, then it is called as binary down
counter.

There are two types of counters based on the flip-flops that are connected
In synchronous or not.

. Asynchronous counters

. Synchronous counters

Asynchronous Counters

If the flip-flops do not receive the same clock signal, then that counter is
called as Asynchronous counter. The output of system clock is applied
as clock signal only to first flip-flop. The remaining flip-flops receive the
clock signal from output of its previous stage flip-flop. Hence, the outputs
of all flip-flops do not change affect at the same time.

Now, let us discuss the following two counters one by one.

. Asynchronous Binary up counter

. Asynchronous Binary down counter

Asynchronous Binary Up Counter

An ‘N’ bit Asynchronous binary up counter consists of ‘“N* T flip-flops.
It counts from 0 to 2V — 1. The block diagram of 3-bit Asynchronous
binary up counter is shown in the following figure.

The 3-bit Asynchronous binary up counter contains three T flip-flops and

| L
To Qo LTl Qi T; Q2

i1 T T
Flip-Flop Flip-Flop Flip-Flop

~ Counter
Output

clk

the T-input of all the flip-flops are connected to ‘1°. All these flip-flops
are negative edge triggered but the outputs change asynchronously. The

156

clock signal is directly applied to the first T flip-flop. So, the output of
first T flip-flop toggles for every negative edge of clock signal.

The output of first T flip-flop is applied as clock signal for second T flip-
flop. So, the output of second T flip-flop toggles for every negative edge
of output of first T flip-flop. Similarly, the output of third T flip-flop
toggles for every negative edge of output of second T flip-flop, since the
output of second T flip-flop acts as the clock signal for third T flip-flop.
Assume the initial status of T flip-flops from rightmost to leftmost
is Q2Q1Qo = 000. Here, Q2 & Qo are MSB & LSB respectively. We can
understand the working of 3-bit asynchronous binary counter from the
following table.

No of negative edge of | QoLSB Q1 Q:MSB
Clock

0 0 0 0

1 1 0 0

2 0 1 0

3 1 1 0

4 0 0 1

5 1 0 1

6 0 1 1

7 1 1 1

Here Qo toggled for every negative edge of clock signal. Q: toggled for
every Qo that goes from 1 to 0, otherwise remained in the previous state.
Similarly, Q2 toggled for every Q: that goes from 1 to 0, otherwise
remained in the previous state.

The initial status of the T flip-flops in the absence of clock signal
IS Q2Q1Qo0= 000. This is incremented by one for every negative edge of
clock signal and reached to maximum value at 7" negative edge of clock
signal. This pattern repeats when further negative edges of clock signal
are applied.

Asynchronous Binary Down Counter

An ‘N’ bit Asynchronous binary down counter consists of ‘N’ T flip-
flops. It counts from 2¥— 1 to 0. The block diagram of 3-bit
Asynchronous binary down counter is shown in the following figure.

157

IFT 211 DIGITAL AND LOGIC DESIGN

The block diagram of 3-bit Asynchronous binary down counter is similar

1
To Qo}— Ty Q1 T QM
T T T
Flip-Flop Flip-Flop Flip-Flop
c> , :
Qo '> Q1 Q>

~ Counter

Output

ek P

to the block diagram of 3-bit Asynchronous binary up counter. But, the
only difference is that instead of connecting the normal outputs of one
stage flip-flop as clock signal for next stage flip-flop, connect
the complemented outputs of one stage flip-flop as clock signal for next
stage flip-flop. Complemented output goes from 1 to 0 is same as the
normal output goes from 0 to 1.

Assume the initial status of T flip-flops from rightmost to leftmost
IS Q2Q1Q0 = 000. Here, Q2 & Qo are MSB & LSB respectively. We can
understand the working of 3-bit asynchronous binary down counter from
the following table.

No of negative edge of | QoLSB Q1 Q:MSB
Clock

0 0 0 0

1 1 1 1

2 0 1 1

3 1 0 1

4 0 0 1

5 1 1 0

6 0 1 0

7 1 0 0

Here Qo toggled for every negative edge of clock signal. Q: toggled for
every Qo that goes from 0 to 1, otherwise remained in the previous state.
Similarly, Q2 toggled for every Q: that goes from 0 to 1, otherwise
remained in the previous state.

158

The initial status of the T flip-flops in the absence of clock signal
Is Q2Q1Qo = 000. This is decremented by one for every negative edge of
clock signal and reaches to the same value at 8" negative edge of clock
signal. This pattern repeats when further negative edges of clock signal
are applied.

Synchronous Counters

If all the flip-flops receive the same clock signal, then that counter is
called as Synchronous counter. Hence, the outputs of all flip-flops
change affect at the same time.

Now, let us discuss the following two counters one by one.

. Synchronous Binary up counter

. Synchronous Binary down counter

Synchronous Binary Up Counter

1—T QM HTt QA D—-Tz QM
T T i T

Flip-Flop Flip-Flop Flip-Flop

— Yo
K

clk

An ‘N’ bit Synchronous binary up counter consists of ‘N’ T flip-flops. It
counts from 0 to 2V — 1. The block diagram of 3-bit Synchronous binary
up counter is shown in the following figure.

Q d

— Counter
Output

The 3-bit Synchronous binary up counter contains three T flip-flops &
one 2-input AND gate. All these flip-flops are negative edge triggered and

T T | [T
Flip-Flop Flip-Flop Flip-Flop

1 =——1To Q T1 Q1 — Ty QM

— Counter
Output

clk

159

IFT 211 DIGITAL AND LOGIC DESIGN

the outputs of flip-flops change affect synchronously. The T inputs of
first, second and third flip-flops are 1, Qo & Q1Qo respectively.

The output of first T flip-flop toggles for every negative edge of clock
signal. The output of second T flip-flop toggles for every negative edge
of clock signal if Qo is 1. The output of third T flip-flop toggles for every
negative edge of clock signal if both Qo & Q1 are 1.

Synchronous Binary Down Counter

An ‘N’ bit Synchronous binary down counter consists of ‘N’ T flip-flops.
It counts from 2¥ — 1 to 0. The block diagram of 3-bit Synchronous
binary down counter is shown in the following figure

The 3-bit Synchronous binary down counter contains three T flip-flops &
one 2-input AND gate. All these flip-flops are negative edge triggered and
the outputs of flip-flops change affect synchronously. The T inputs of
first, second and third flip-flops are 1, Qo' &' Q1" Qo’ respectively.

The output of first T flip-flop toggles for every negative edge of clock
signal. The output of second T flip-flop toggles for every negative edge
of clock signal if Qo' is 1. The output of third T flip-flop toggles for every
negative edge of clock signal if both Q1" & Qo' are 1.

Tutor Marked Assignment

1. If the resolution of a digital-to-analog converter is approximately
0.4% of its full-scale range, then it is?

2. A Dbidirectional 4-bit shift register is storing the nibble 1101. Its
input is HIGH. The nibble 1011 is waiting to be entered on the
serial data-input line. After three clock pulses, the shift register is

storing ?
3. How many different states does a 3-bit asynchronous down counter
have?
4, In a 3-bit asynchronous down counter, at the first negative
transition of the clock, the counter content becomes
2

5. For a 4 bit MOD-16 ripple counter using J-K flip-flop, the
propagation delay of each flip flop is 50ns. What is the maximum
clock frequency can be used?

SELF ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What type of flip-flop is commonly used in binary counters?
A D flip-flop

B. SR flip-flop

C. T flip-flop

160

D. JK flip-flop
Answer: C
Explanation: T flip-flops toggle their output on clock edges, making
them ideal for counters.

2. What is the range of a 3-bit binary up counter?

A. Oto3

B. Oto7

C. 1t08

D. 0 to 15
Answer: B
Explanation: A 3-bit counter counts from 0 to 23 -1=7.

3. In an asynchronous counter, which flip-flop receives the

system clock directly?

A. First flip-flop

B. Second flip-flop

C. Last flip-flop

D. None

Answer: A
Explanation: Only the first flip-flop receives the system clock; others are
triggered by previous outputs.

4, What distinguishes asynchronous counters from synchronous
counters?

A. Use of D flip-flops

B. All flip-flops share the same clock

C. Flip-flops are triggered sequentially

D. They count in reverse
Answer: C
Explanation: In asynchronous counters, flip-flops are triggered by the
output of the previous stage.

5. What is the toggling condition for Q1 in a 3-bit asynchronous
up counter?

A. Every clock edge

B. When Q0 goes from 0 to 1

C. When QO goes from 1t0 0

D. When Q2 toggles
Answer: C
Explanation: Q1 toggles when QO transitions from 1 to 0.

6. How is the clock signal routed in an asynchronous down
counter?

A. Directly to all flip-flops

B. Through complemented outputs of previous flip-flops

C. Through AND gates

D. Through serial input
Answer: B
Explanation: Complemented outputs are used to trigger the next flip-flop
in down counters.

161

IFT 211 DIGITAL AND LOGIC DESIGN

7. What is the toggling condition for Q2 in a synchronous up
counter?

A. When Q0 is 1

B. When Qlis 1

C. When Q0 and Q1 are both 1

D. Every clock edge
Answer: C

Explanation: Q2 toggles when both Q0 and Q1 are 1.

8. Which counter type updates all flip-flops simultaneously?
A. Asynchronous counter

B. Synchronous counter

C. Down counter

D.

Ripple counter
Answer: B
E. Explanation: Synchronous counters use a common clock signal
for all flip-flops.

0. What is the toggling condition for Q1 in a synchronous down
counter?

A. When Q0 is 1
B. When Q0" is 1
C. When Q1"is 1
D. When Q2' is 1
Answer: B

E. Explanation: Q1 toggles when Q0 (complement of QO) is 1.

10. What is the output pattern of a 3-bit asynchronous down
counter starting from 1117

A. 111 - 110 - 101 —- 100 - 011 — 010 — 001 — 000

B. 000 — 001 - 010 - 011 - 100 - 101 - 110 =111

C. 111 - 000 — 111

D. 000 — 111 — 000

Answer: A

Explanation: The counter decrements from 7 (111) to 0 (000).

Fill in the Blank Questions

1. A 3-bit binary counter counts from 0 to

Answer: 7

2. In asynchronous counters, flip-flops are triggered by the
of the previous flip-flop.

Answer: output

3. In synchronous counters, all flip-flops receive the same

signal.
Answer: clock

162

4. The T flip-flop toggles its output on every edge of the

clock signal.
5. Answer: negative

6. In a synchronous down counter, the third flip-flop toggles when
both Qr’ and are 1.
Answer: QO0'

163

IFT 211 DIGITAL AND LOGIC DESIGN

Module5 Memory Devices and Programmable Logic

Unit 1 Memory Devices and Classification

Unit 2 Programmable Logic Array (PLAS)

Unit 3 Programmable Logic Devices (PLDs)
Unit 4 Field-Programmable Gate Arrays (FGPAS)
Unit 1 Memory Devices and Classification

Memory structures are crucial in digital design. - ROM, PROM, EPROM,
RAM, SRAM, (S) DRAM, RDRAM, ...

> All memory structures have an address bus and a data bus — Possibly

other control signals to control output etc. *E.g. 4 Bit Address bus
with 5 Bit Data Bus ADDR DOUT

There are two types of memories that are used in digital systems:

. Random-access memory (RAM): perform both the write and read
operations.
o Read-only memory (ROM): perform only the read operation.

The read-only memory is a programmable logic device. Other such units
are the programmable logic array (PLA), the programmable array
logic (PAL), and the field-programmable gate array (FPGA).

Random-Access Memory

A memory unit stores binary information in groups of bits called words.
o byte = 8 bits

o word = 2 bytes

The communication between a memory and its environment is achieved
through data input and output lines, address selection lines, and
control lines that specify the direction of transfer.

) In random-access memory, the word locations may be thought of
as being separated in space, with each word occupying one
particular location.

o In sequential-access memory, the information stored in some
medium is not immediately accessible, but is available only certain
intervals of time. A magnetic disk or tape unit is of this type.

o In a random-access memory, the access time is always the same
regardless of the particular location of the word.

164

) In a sequential-access memory, the time it takes to access a word
depends on the position of the word with respect to the reading
head position; therefore, the access time is variable.

ln data input lines

k address lines ——=
Memory unit
Read —— 2K words

e n bit per word
Write ——>

l n data output lines

Fig. 7-2 Block Diagram of a Memory Unit

Static RAM

o SRAM consists essentially of internal latches that store the binary
information.

o The stored information remains valid as long as power is applied
to the unit.

. SRAM is easier to use and has shorter read and write cycles.

. Low density, low capacity, high cost, high speed, high power
consumption.

Dynamic RAM

J DRAM stores the binary information in the form of electric

charges on capacitors.

o The capacitors are provided inside the chip by MOS transistors.

o the capacitors tends to discharge with time and must be

periodically recharged by refreshing the dynamic memory.

. DRAM offers reduced power consumption and larger storage c

High density, high capacity, low cost, low speed, low power consumption.

o The equivalent logic of a binary cell that stores one bit of

information is apacity in a single memory chip.

shown below.
° Read/Write = 0, select = 1, input data to S-R latch
° Read/Write = 1, select = 1, output data from S-R latch

165

IFT 211 DIGITAL AND LOGIC DESIGN

Memory decoding

Input Data
0
. @ (@ & &
mes A y
B (ol @ (o
IDecoder
2
Memory | - [[[
Enable
3
s -G '@ '@ '@
Output Data
BB S oL ¢ 6
(1) pofe i () prjoe quoti
o oo
. {‘:)"r r) " HOU NG
!
ml:m\ ' \
/ == MO pubge| f1(; =+ b
i

T gr.‘|r.r [

gl

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

What is the primary function of memory in digital systems?
To perform calculations

To store data and instructions

To display output

To generate clock signals

OOw P

166

OOWPEUOTP COOWPPUOTPNUOIPOPUOWPITOTPATUOTPRTO BB

Which type of memory is volatile?

ROM

Flash

RAM

EEPROM

What does ROM stand for?

Random Output Memory

Read Only Memory

Real Operating Module

Rapid Online Memory

Which memory retains data even when power is off?
RAM

ROM

Cache

Register

What type of memory is used for temporary data storage?
ROM

RAM

Flash

Hard Disk

Which of the following is a non-volatile memory?
RAM

Cache

ROM

DRAM

What is the function of cache memory?

Long-term storage

High-speed temporary storage

Permanent data retention

Data encryption

Which memory type is programmable and erasable?
RAM

PROM

EPROM

Cache

What does EEPROM stand for?

Electrically Erasable Programmable Read Only Memory
Enhanced Erasable Programmed Output Module
Electronic Erased Primary ROM

External Erasable Processing Memory

Which memory type is used to store BIOS in computers?
RAM

ROM

Cache

DRAM

167

IFT 211 DIGITAL AND LOGIC DESIGN

Fill in the Blank Questions

1. memory loses its contents when power is turned off.
— RAM

2. stands for Read Only Memory. — ROM

3. memory is used for high-speed temporary storage. —
Cache

4. is a type of memory that can be electrically erased
and reprogrammed. — EEPROM

S. The BIOS in a computer is stored in .— ROM

168

Unit 2 Programmable Logic Array

o The decoder in PROM is replaced by an array of AND gates that
can be programmed to generate any product term of the input variables.

) The product terms are then connected to OR gates to provide the
sum of products for the required Boolean functions.
o The output is inverted when the XOR input is connected to 1 (since

X1 =x’). The output doesn’t change and connect to 0 (since xP0 = X).
F1 = AB+AC+A’BC’

— b
F2 = (AC+BC)
A =
B ——{2]
¢ .
:
D=
1 1 1 A'BC’
C CB B AA 0
WAV, '
>
>
Fig. 7-14 PLA with 3 Inputs, 4 Product Terms and 2 Outputs

Implement the following two Boolean functions with a PLA:
. Fi(A, B, C)=31(0, 1,2, 4)
° F2(A,B,C)=>/(0,5,6,7)

BC B BC B
00 01 11 10 00 01 11 10
A A
tl1]o]1 tlolo]o
0 0
Altf 1 Lo oo Aftf o 1|11
C C
F=AB+AC +BC Fy=AB+AC+A'BC
Fy = (4B + AC + BC) Fy=(A'C+A'B+ABC)'

169

IFT 211 DIGITAL AND LOGIC DESIGN

m Both the true and complement of
the functions are simplified in sum
of products.

= We can find the same terms from
the group terms of the functions of
Fy, F17,F> and F3’ which will make
the minimum terms.

F1 = (AB + AC + BC)’
F2 = AB + AC + A'B’'C’

PLA programming table
Outputs
Product Inputs (C) (1)
term A B C F F>

AB X 135 1 1

AC 2 1 -1 1 1
BC 3 -11 1 -
A'B'C 4 000 - 1

Fig. 7-15 Solution to Example 7-2

a—Is

y

101010

CCBBEBAA

<

170

SELF ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What component replaces the decoder in a PLA compared to
a PROM?
A. OR gates

B. XOR gates

C. AND gates

D. Flip-flops

Answer: C
Explanation: In a PLA, the decoder is replaced by a programmable array
of AND gates to generate product terms.

2. What is the role of the OR gates in a PLA?

A. To invert the output

B. To generate product terms

C. To combine product terms into sum-of-products expressions

D. To store binary data
Answer: C
Explanation: OR gates in a PLA combine the product terms to form the
final output functions.

3. What happens when the XOR input in a PLA is connected to
1?
A. The output is unchanged

B. The output is inverted

C. The input is disabled

D. The output IS multiplied
Answer: B
Explanation: Connecting XOR input to 1 inverts the output since x \oplus
1=x.

4, Which of the following is a valid product term for F1 = AB’ +
AC +A'BC"?

A. AB

B. AC

C. A'B'C

D. BC

Answer: B

Explanation: AC is one of the product terms used in the sum-of-products
expression for Fi.

S. How many product terms are needed to implement F1 = AB' +
AC +A'BC"?

A. 2

B. 3

C. 4

171

IFT 211 DIGITAL AND LOGIC DESIGN

D. 3)

Answer: B
Explanation: F. uses three product terms: AB’, AC, and A'BC".

6. What is the simplified Boolean expression for F.=(AC + BC)'?
A. AC+BC

B. A'C'+B'C’

C. A"+ B’
D. F2 = A'B’ + A'C’ + B'C’
Answer: D

Explanation: The complement of AC + BC is simplified using
DeMorgan’s laws and K-map techniques.

7. What does the PLA programming table specify?

A Truth table of the circuit

B. Input-output voltage levels

C. Mapping of product terms to inputs and outputs

D. Clock timing
Answer: C

Explanation: The PLA programming table shows how product terms are
formed and which outputs they affect.

8. How many inputs are used in the PLA shown in the example?
A. 2
B. 3
C. 4
D. 5
Answer: B

Explanation: The PLA uses three inputs: A, B, and C.

9. What is the output of a PLA when the XOR input is connected
to 0?7

A. The output is inverted

B. The output is unchanged

C. The output is disabled

D. The output IS multiplied
Answer: B
Explanation: When XOR input is 0, the output remains unchanged since
x \oplus 0 = x.

10. Which of the following Boolean functions is implemented using
a PLA in the example?

A. Fi=AB+ AC

B. F.=AB+AC+ A'B'C’

C. F.=AB'+ AC+ A'BC’

D. F2 = AC + BC
Answer: C
Explanation: F. is implemented as AB’ + AC + A'BC’ in the PLA
example.

Fill in the Blank Questions

172

1. In a PLA, the decoder is replaced by a programmable array of
gates.

Answer: AND
2. The output of a PLA is inverted when the XOR input is connected

to

Answer: 1
3. The Boolean function F: = AB' + AC + A’'BC’' is implemented
using product terms.

Answer: three

4. The PLA programming table maps product terms to

and

Answer: inputs, outputs

S. The simplified expression for F2 = (AC + BC)' is derived using
maps.

Answer: Karnaugh

173

IFT 211 DIGITAL AND LOGIC DESIGN

Unit 3 Programmable Logic Device
What is PLD?

A PLD is a class of integrated circuit that may be configured to carry out
a number of different digital logic operations. Common uses for them
include simple logic circuits, state machines, and counters, which only
need a few logic gates to function.

PLD programming

A number of techniques can be used to program PLDs, including:

. In-circuit programming (ICP): PLDs can be programmed while
they are inserted in a circuit using a technique called in-circuit
programming (ICP). Typically, production applications adopt this
technique.

. External programming (EPROM): PLDs can be programmed
using external programming (EPROM), which involves removing the
PLD from the circuit and using an external programmer. Applications in
development and prototype are frequently employed with this technique.
. Flash programming (Flash): Flash programming is a similar
technique to EPROM programming for PLDs, however it allows for
numerous PLD reprogramming. This approach is frequently employed in
situations when it may be necessary to modify the logic function.

PLDs are often programmed using a software tool that creates the PLD's
programming data. Typically, the software tool has a graphical user
interface that enables the user to design the PLD's logic function.

The software tool generates the PLD programming data when the logic
function has been created. Then, through one of the aforementioned
techniques, the programming data is downloaded to the PLD.

SELF ASSESMENT EXERCISES
Multiple Choice Questions (MCQs)
1. What does PLD stand for?
A. Programmable Logic Decoder
B. Programmable Logic Device

174

https://www.ampheo.com/c/plds-programmable-logic-device

C. Peripheral Logic Driver

D. Parallel Logic Design
Answer: B
Explanation: PLD stands for Programmable Logic Device.

2. Which of the following is a typical use for PLDs?

A Image processing

B. Simple logic circuits

C. Audio amplification

D. Data storage
Answer: B
Explanation: PLDs are commonly used for simple logic circuits, state
machines, and counters.

3. What is the main advantage of PLDs?

A. Fixed functionality

B. High power consumption

C. Configurability for different logic operations

D. Analog signal processing
Answer: C
Explanation: PLDs can be configured to perform various digital logic
operations.

4, Which programming method allows PLDs to be programmed
while still in the circuit?

A. EPROM

B. Flash

C. In-circuit programming (ICP)

D. External programming
Answer: C

Explanation: ICP allows PLDs to be programmed without removing
them from the circuit.

5. Which programming method is commonly used for prototypes
and development?

A. ICP

B. EPROM

C. Flash

D. ROM

Answer: B

Explanation: EPROM programming is often used in development and

prototyping.
6. What is a key benefit of flash programming for PLDs?

A. It is permanent

B. It allows multiple reprogrammings

C. It requires no software

D. It uses analog signals
Answer: B

Explanation: Flash programming enables PLDs to be reprogrammed
multiple times.

175

IFT 211 DIGITAL AND LOGIC DESIGN

7 What kind of interface do most PLD software tools provide?
A. Command-line only
B. Graphical user interface
C Text editor

D. Voice-controlled interface
Answer: B
Explanation: Most PLD tools offer a GUI for designing logic functions.
8. What does the software tool generate for PLD programming?
A. Clock signals

B. Logic gates

C. Programming data

D. Binary counters
Answer: C
Explanation: The software tool generates the programming data for the
PLD.

9. Which method involves removing the PLD from the circuit for
programming?

A. ICP

B. Flash

C. EPROM

D. RAM

Answer: C

Explanation: EPROM programming requires the PLD to be removed
from the circuit.
10. Which technique is best suited for production environments?
A. EPROM

B. Flash

C. ICP

D. Manual wiring
Answer: C

Explanation: ICP is typically used in production applications.
Fill in the Blank Questions

1. PLD stands for Logic Device.
Answer: Programmable

2. PLDs are commonly used in logic circuits and
counters.

Answer: simple

3. programming allows PLDs to be programmed while
still in the circuit.
Answer: In-circuit

4. programming allows PLDs to be reprogrammed
multiple times.
Answer: Flash

5. A user interface is typically used in PLD software
tools.

Answer: graphical

176

Unit 4 Field-Programmable Gate Arrays
What is a FPGA Board?

FPGA is the most versatile type of PLD. They are made up of many logic
components that can be coupled in many ways. They are therefore perfect
for applications that need a lot of flexibility and customization. FPGAs
are frequently used in programs for embedded systems, signal processing,
networking, cryptography, industrial automation, and other things.

FPGA programming

A programmable routing network can be used to connect the grid of logic
cells that make up FPGAs. This makes it possible to arrange FPGAs to
carry out a wide range of functions.

A number of techniques can be used to program FPGAs, including:

. High-level synthesis (HLS): High-level synthesis (HLS) is a
technique for programming FPGAs that creates the programming
information for the FPGA using a high-level programming
language, such C or C++. Usually, complicated applications that
demand a high level of performance adopt this approach.

. Verilog HDL: An FPGA's logic functions are described using
Verilog HDL, a hardware description language. Usually, medium-
to-complex applications adopt this approach.

. VHDL.: Similar to Verilog HDL, VHDL is a hardware description
language. The majority of the time, complicated applications adopt
this technique.

177

https://www.ampheo.com/c/fpgas-field-programmable-gate-array
https://www.ampheo.com/blog/basic-introduction-of-fpga-applications-structures-and-components.html
https://en.wikipedia.org/wiki/High-level_synthesis
https://www.ampheo.com/blog/what-is-verilog-module-multiplexer-and-verilog-vs-vhdl.html
https://www.ampheo.com/blog/a-detailed-introduction-to-vhdl-programming-language.html

IFT 211 DIGITAL AND LOGIC DESIGN

A software tool that produces the programming data for the FPGA is
commonly used to program FPGAs. Typically, the software tool has a
graphical user interface that enables the user to design the FPGA's logic
function.

The software tool generates the FPGA programming data when the logic
function has been created. A programming tool, such as a USB
programmer, is then used to download the programming data to the
FPGA.

Tutor Marked Assignment

1. Design a Full Adder using ROM and PLA

2. Design a 5X2 RAM using D Flip-flop

3. How many 16K * 4 RAMs are required to achieve a memory with
a capacity of 64K and a word length of 8 bits?

4, The complex programmable logic device contains several PLD
blocks and ?

5. The difference between a PAL & a PLA is ?

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What does FPGA stand for?

A. Flexible Programmable Gate Array

B. Field-Programmable Gate Array

C. Fixed-Performance Gate Array

D. Fast Processing Gate Architecture
Answer: B
Explanation: FPGA stands for Field-Programmable Gate Array.

2. Which of the following best describes an FPGA?

A. A fixed-function processor

B. A memory storage device

C. A customizable logic device

D. A digital-to-analog converter
Answer: C
Explanation: FPGAs are highly flexible and customizable logic devices.
3. Which application is NOT typically associated with FPGAS?
A. Cryptography

B. Industrial automation

C. Word processing

D. Signal processing
Answer: C

Explanation: Word processing is typically handled by general-purpose
CPUs, not FPGAs.

4. What connects the logic cells in an FPGA?

A. Serial bus

B. Clock signal

C. Programmable routing network

178

D. USB interface
Answer: C
Explanation: A programmable routing network links the logic cells in an
FPGA.

5. Which programming method uses high-level languages like C
or C++?
A. VHDL

B. Verilog HDL

C. High-Level Synthesis (HLS)

D. Assembly

Answer: C
Explanation: HLS allows FPGA programming using high-level
languages.

6. Which hardware description language is similar to Verilog
HDL?

A. Python

B. VHDL

C. Java

D. C++

Answer: B
Explanation: VHDL is another hardware description language used for
FPGA programming.

7. What is the role of the software tool in FPGA programming?
A. To generate clock signals

B. To create logic gates

C. To produce programming data for the FPGA

D. To store binary data
Answer: C
Explanation: The software tool designs the logic and generates
programming data.

8. What is typically used to download programming data to an
FPGA?

A. HDMI cable

B. USB programmer

C. Ethernet cable

D. Serial port
Answer: B
Explanation: A USB programmer is commonly used to load data into the
FPGA.

9. Which method is most suitable for medium-to-complex FPGA
applications?

A VHDL

B. Verilog HDL

C. HLS

D. Python

Answer: B

179

IFT 211 DIGITAL AND LOGIC DESIGN

Explanation: Verilog HDL is widely used for medium-to-complex
FPGA designs.

10. What kind of interface do most FPGA software tools provide?
A. Command-line only

B. Graphical user interface

C. Text editor

D. Voice-controlled interface
Answer: B
Explanation: Most FPGA tools offer a GUI for designing logic
functions.

Fill in the Blank Questions

1. FPGA stands for Programmable Gate Array.
Answer: Field

2. FPGAs are made up of a grid of cells.
Answer: logic

3. is a high-level programming technique used for
FPGA design.
Answer: High-Level Synthesis (HLS)

4, and VHDL are hardware description languages used
to program FPGA:s.
Answer: Verilog HDL

5. A is commonly used to transfer programming data to
an FPGA.

Answer: USB programmer

180

