
 أ‌

IFT 211

DIGITAL AND LOGIC DESIGN

Course Team Dr. Kehinde Adebola Sotonwa (Course
Developer/Writer) – Lagos State University, Ojo,
Lagos State

 Prof Joshua Abah (Course Editor) – Nile University,
Abuja

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE
GUIDE

IFT 211 DIGITAL AND LOGIC DESIGN

 ب‌‌

© 2025 by NOUN Press

National Open University of Nigeria

Headquarters
University Village
Plot 91, Cadastral Zone
Nnamdi Azikiwe Expressway
Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

All rights reserved. No part of this book may be reproduced, in any
form or by any means, without permission in writing from the publisher.

First Printed 2008

Reprinted 2025

ISBN: 978-058-470-6

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

1

CONTENTS PAGE

Course Introduction 1

What you will Learn in this Course 2

Course Aim 2

Course Objectives 2

Working through this Course 3

Course Justification 3

Course Materials 3

Course Requirements 4

Study Units 4

Textbooks and References 5

Assignment File 8

Presentation Schedule 8

Assessment 8

Tutor-Marked Assignments (TMAs) 8

Final Examination and Grading 8

Course Marking Scheme 9

Course Overview 9

How to Get the Best from this Course 10

Tutors and Tutorials 11

Course Structure and Specification 13

IFT 211 DIGITAL AND LOGIC DESIGN

2

COURSE INTRODUCTION

IFT 211 - Digital and Logic Design: Welcome to Digital and Logic

Design, This course provides a comprehensive overview of digital logic

fundamentals, covering essential topics ranging from number systems and

logic gates to sequential circuits and programmable logic devices.

Through a combination of theoretical lectures, hands-on activities, and

practical assignments, you will go into the world of digital systems design

and gain the necessary skills to analyse, design, and implement digital

circuits.

WHAT YOU WILL LEARN IN THIS COURSE

In this course, you will learn the foundational principles of digital and

logic design, including:

• Understanding different number systems and base conversions.

• Exploring complement systems and codes used in digital systems.

• Analysing and designing digital logic gates circuits.

• Mastering Boolean algebra and its application in digital circuit

design.

• Learning about canonical and standard forms for Boolean

expressions.

• Utilizing minimization techniques such as Karnaugh maps.

• Understanding the physical properties of logic gates.

• Designing combinational circuits and implementing design

procedures.

• Exploring sequential circuits, including flip-flops, latches,

registers, and counters.

• Studying memory devices classification and their applications.

• Learning about programmable logic devices such as PLAs, PLDs,

and FPGAs.

COURSE AIM
The aim of this course is to provide you with a solid foundation in digital

and logic design principles, equipping you with the knowledge and skills

necessary to analyse, design, and implement digital circuits for a variety

of applications.

COURSE OBJECTIVES

By the end of this course, you will be able to:

1. Understand the fundamentals of number systems and perform base

conversions.

2. Analyse and design digital logic gates circuits.

IFT 211 DIGITAL AND LOGIC DESIGN

3

3. Apply Boolean algebra techniques to simplify logic expressions.

4. Utilize minimization techniques, including Karnaugh maps, to

optimize digital circuits.

5. Design combinational and sequential circuits, including flip-flops,

latches, registers, and counters.

6. Explore memory devices classification and their applications in

digital systems.

7. Program and configure programmable logic devices such as PLAs,

PLDs, and FPGAs for various digital logic applications.

WORKING THROUGH THIS COURSE

To complete this course, you are required to study all the units, the

recommended text books, and other relevant materials. Each unit contains

some tutor - marked assignments, and at some point in this course, you

are required to submit the tutor marked assignments.

COURSE JUSTIFICATION

A comprehensive study of digital logic design is essential for

understanding the foundational principles of computer engineering and

electronics. This course covers key areas such as number systems, digital

logic gates, Boolean algebra, minimization techniques, and the design and

analysis of combinational and sequential circuits. Starting with the basics

of number systems and Boolean algebra, students will learn to work with

digital logic gates and understand canonical and standard forms.

Minimization techniques like the Karnaugh Map method and the study of

the physical properties of gates will help optimize digital circuits.

The course then explores combinational circuits, including binary

subtractors, multiplexers, decoders, and encoders, as well as sequential

circuit elements like latches and flip-flops. Further, it covers the design

and analysis of more complex sequential circuits, including flip-flop

conversion, registers, and counters. Finally, students will explore various

memory devices and programmable logic, including programmable logic

arrays, devices, and field-programmable gate arrays. The theoretical and

practical knowledge gained from this course will provide a solid

foundation, enabling students to appreciate the relevance and

interrelationships of different digital logic concepts, preparing them for

advanced studies and practical applications in digital technology.

COURSE MATERIALS
The major components of the course are:

1. Course Guide

2. Study Units

IFT 211 DIGITAL AND LOGIC DESIGN

4

3. Text Books

4. Assignment Files

5. Presentation Schedule

COURSE REQUIREMENTS

This is a compulsory course for all computer science students in the

University. In view of this, students are expected to participate in all the

course activities and have minimum of 75% attendance to be able to write

the final examination.

STUDY UNITS

There are 5 modules and 24 study units in this course. They are:

Module 1: Introduction to Digital Logic Design

Unit 1: Introduction to Number Systems and Base Conversion

Unit 2: Complement Systems and Codes

Unit 3: Digital Logic Gates

Unit 4: Boolean Algebra

Unit 5: Canonical and Standard Forms

Module 2: Minimization Techniques

Unit 1: Karnaugh Map Method

Unit 2: Manipulation and Minimisation

Unit 3: Physical Properties of Gates

Module 3: Combinational and Sequential Circuits

Unit 1: Combinational Circuits and Design Procedure

Unit 2: Binary Subtractor

Unit 3: Multiplexers

Unit 4: De-multiplexers

Unit 5: Decoders

Unit 6: Encoders

Unit 7: Latches

Unit 8: Flip-Flops

Module 4: Sequential Circuits

Unit 1: Sequential Circuits

Unit 2: Conversion of Flip-Flops

Unit 3: Registers

IFT 211 DIGITAL AND LOGIC DESIGN

5

Unit 4 Counters

Module 5: Memory Devices and Programmable Logic

Unit 1: Memory Devices and Classification

Unit 2: Programmable Logic Array (PLAs)

Unit 3: Programmable Logic Devices (PLDs)

Unit 4: Field-Programmable Gate Arrays (FGPAs)

TEXTBOOKS AND REFERENCES

M. Morris Mano. Digital Logic and Computer Design.

Dr. Muhamed Mudawar. Digital Logic Design

Department of Information Technology (2018). Digital Notes on Digital

Logic Design.

Digital Circuits Number Systems

https://www.tutorialspoint.com/digital_circuits/digital_circuits_n

umber_systems.htm

Digital Circuits Base Conversions

https://www.tutorialspoint.com/digital_circuits/digital_circuits_base_co

nversions.htm

Digital Circuits Codes

https://www.tutorialspoint.com/digital_circuits/digital_circuits_codes.ht

m

Digital Circuits Error Detection Correction Codes

https://www.tutorialspoint.com/digital_circuits/digital_circuits_error_de

tection_correction_codes.htm

Digital Circuits Boolean Algebra

https://www.tutorialspoint.com/digital_circuits/digital_circuits_boolean

_algebra.htm

Digital Circuits Canonical Standard Forms

https://www.tutorialspoint.com/digital_circuits/digital_circuits_canonica

l_standard_forms.htm

https://www.tutorialspoint.com/digital_circuits/digital_circuits_number_systems.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_number_systems.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_codes.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_codes.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_error_detection_correction_codes.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_error_detection_correction_codes.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_boolean_algebra.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_boolean_algebra.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_canonical_standard_forms.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_canonical_standard_forms.htm

IFT 211 DIGITAL AND LOGIC DESIGN

6

Digital Circuits K Map Method

https://www.tutorialspoint.com/digital_circuits/digital_circuits_k_map_

method.htm

Digital Circuits Quine-McCluskey Tabular Method

https://www.tutorialspoint.com/digital_circuits/digital_circuits_quine_m

ccluskey_tabular_method.htm

Digital Circuits Logic Gates

https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_ga

tes.htm

Digital Combinational Circuits

https://www.tutorialspoint.com/digital_circuits/digital_combinational_ci

rcuits.htm

Digital Arithmetic Circuits

https://www.tutorialspoint.com/digital_circuits/digital_arithmetic_circui

ts.htm

Digital Circuits Decoders

https://www.tutorialspoint.com/digital_circuits/digital_circuits_decoders

.htm

Digital Circuits Encoders

https://www.tutorialspoint.com/digital_circuits/digital_circuits_encoders

.htm

Digital Circuits Multiplexers

https://www.tutorialspoint.com/digital_circuits/digital_circuits_multiple

xers.htm

Digital Circuits De-Multiplexers

https://www.tutorialspoint.com/digital_circuits/digital_circuits_demultip

lexers.htm

Digital Circuits Programmable Logic Devices

https://www.tutorialspoint.com/digital_circuits/digital_circuits_program

mable_logic_devices.htm

https://www.tutorialspoint.com/digital_circuits/digital_circuits_k_map_method.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_k_map_method.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_quine_mccluskey_tabular_method.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_quine_mccluskey_tabular_method.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm
https://www.tutorialspoint.com/digital_circuits/digital_combinational_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_combinational_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_arithmetic_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_arithmetic_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_decoders.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_decoders.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_encoders.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_encoders.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_multiplexers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_multiplexers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_demultiplexers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_demultiplexers.htm

IFT 211 DIGITAL AND LOGIC DESIGN

7

Digital Circuits Sequential Circuits

https://www.tutorialspoint.com/digital_circuits/digital_circuits_sequent

ial_circuits.htm

Digital Circuits Latches

https://www.tutorialspoint.com/digital_circuits/digital_circuits_latches.

htm

Digital Circuits Flip-Flops

https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flo

ps.htm

Digital Circuits Conversion of Flip-Flops

https://www.tutorialspoint.com/digital_circuits/digital_circuits_convers

ion_of_flip_flops.htm

Digital Circuits Shift Registers

https://www.tutorialspoint.com/digital_circuits/digital_circuits_shift_re

gisters.htm

Digital Circuits Counters

https://www.tutorialspoint.com/digital_circuits/digital_circuits_counter

s.htm

Minimization of Boolean Functions

https://www.slideshare.net/blaircomp2003/minimization-of-boolean-

functions-39058948

PLDs vs. FPGAs

https://www.ampheo.com/blog/plds-vs-fpgas-whats-the-difference-

between-them.html

TMA on Memory Device and Programmable Logic

https://engweb.eng.wayne.edu/~ad5781/ECECourses/ECE2610/Lecture

Notes/Lecture13.pdf

TMA on K Map

https://www.gatevidyalay.com/tag/karnaugh-map-questions-and-

answers-pdf/

TMA on Digital Logic Design

https://www.geeksforgeeks.org/digital-logic-design-mcqs/

https://www.tutorialspoint.com/digital_circuits/digital_circuits_sequential_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_sequential_circuits.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_latches.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_latches.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flops.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flops.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_conversion_of_flip_flops.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_conversion_of_flip_flops.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_shift_registers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_shift_registers.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_counters.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_counters.htm
https://www.slideshare.net/blaircomp2003/minimization-of-boolean-functions-39058948
https://www.slideshare.net/blaircomp2003/minimization-of-boolean-functions-39058948
https://www.ampheo.com/blog/plds-vs-fpgas-whats-the-difference-between-them.html
https://www.ampheo.com/blog/plds-vs-fpgas-whats-the-difference-between-them.html
https://www.gatevidyalay.com/tag/karnaugh-map-questions-and-answers-pdf/
https://www.gatevidyalay.com/tag/karnaugh-map-questions-and-answers-pdf/

IFT 211 DIGITAL AND LOGIC DESIGN

8

ASSIGNMENT FILE

The assignment file will be given to you in due course. In this file, you

will find all the details of the work you must submit to your tutor for

marking. The marks you obtain for these assignments will count towards

the final mark for the course. Altogether, there are 5 tutor marked

assignments for this course.

PRESENTATION SCHEDULE

The presentation schedule included in this course guide provides you with

important dates for completion of each tutor marked assignment. You

should therefore endeavour to meet the deadlines.

ASSESSMENT

There are two aspects to the assessment of this course. First, there are

tutor marked assignments; and second, the written examination.

Therefore, you are expected to take note of the facts, information and

problem solving gathered during the course. The tutor marked

assignments must be submitted to your tutor for formal assessment, in

accordance to the deadline given. The work submitted will count for 40%

of your total course mark. At the end of the course, you will need to sit

for a final written examination. This examination will account for 60% of

your total score.

TUTOR-MARKED ASSIGNMENTS (TMAS)

There are 5 TMAs in this course. You need to submit all the TMAs. The

best 3 will therefore be counted. The total marks for the best five (3)

assignments will be 40% of your total course mark.

FINAL EXAMINATION AND GRADING

The final examination for the course will carry 60% percentage of the

total marks available for this course. The examination will cover every

aspect of the course, so you are advised to revise all your corrected

assignments before the examination.

This course endows you with the status of a teacher and that of a learner.

This means that you teach yourself and that you learn, as your learning

capabilities would allow. It also means that you are in a better position to

IFT 211 DIGITAL AND LOGIC DESIGN

9

determine and to ascertain the what, the how, and the when of your

language learning. No teacher imposes any method of learning on you.

The course units are similarly designed with the introduction following

the contents, then a set of objectives and then the dialogue and so on. The

objectives guide you as you go through the units to ascertain your

knowledge of the required terms and expressions.

COURSE MARKING SCHEME

The following table includes the course marking scheme

Table 1: Course Marking Scheme

Assessment Marks

Assignments 1-5 5 assignments, 40% for the best 3 total = 8% X 5

= 40%

Final Examination 60% of overall course marks

Total 100% of Course Marks

COURSE OVERVIEW

This table indicates the units, the number of weeks required to complete

them and the assignments.

Unit Title of the Work Weeks Assessment

(End of

Unit)

 Course Guide

 Module 1 Introduction to Digital Logic Design

1 Introduction to Number Systems and

Base Conversion
Week 1

and

Week 2

Assessment

1

2 Complement Systems and Codes

3 Digital Logic Gates

4 Boolean Algebra

5 Canonical and Standard Forms

 Module 2 Minimization Techniques

1 Karnaugh Map Method Week 3

and

Week 4

Assessment

2
2 Manipulation and Minimisation

3 Physical Properties of Gates

 Module 3 Combinational and Sequential Circuits

1 Combinational Circuits and Design

Procedure

Week 5

to

Week 8

Assessment

3
2 Binary Subtractor

IFT 211 DIGITAL AND LOGIC DESIGN

10

3 Multiplexers

4 De-multiplexers

5 Decoders

6 Encoders

7 Latches

8 Flip-Flops

 Module 4 Sequential Circuits

1 Sequential Circuits
Week 9

and

Week 10

Assessment

4

2 Conversion of Flip-Flops

3 Registers

4 Counters

 Module 5 Memory Devices and Programmable Logic

1 Memory Devices and Classification

Week 11

and

Week 12

Assessment

5

2 Programmable Logic Array (PLAs)

3 Programmable Logic Devices (PLDs)

4 Field-Programmable Gate Arrays

(FGPAs)

HOW TO GET THE BEST FROM THIS COURSE

In distance learning the study units replace the university lecturer. This is

one of the great advantages of distance learning; you can read and work

through specially designed study materials at your own pace, and at a time

and place that suit you best. Think of it as reading the lecture instead of

listening to a lecturer. In the same way that a lecturer might set you some

reading to do, the study units tell you when to read your set books or other

material. Just as a lecturer might give you an in-class exercise, your study

units provide exercises for you to do at appropriate points.

Each of the study units follows a common format. The first item is an

introduction to the subject matter of the unit and how a particular unit is

integrated with the other units and the course as a whole. Next is a set of

learning objectives. These objectives enable you know what you should

be able to do by the time you have completed the unit. You should use

these objectives to guide your study. When you have finished the units

you must go back and check whether you have achieved the objectives. If

you make a habit of doing this, you will significantly improve your

chances of passing the course.

Remember that your tutor’s job is to assist you. When you need help,

don’t hesitate to call and ask your tutor to provide it.

1. Read this Course Guide thoroughly.

2. Organize a study schedule. Refer to the ‘Course Overview’ for

more details. Note the time you are expected to spend on each unit

and how the assignments relate to the units. Whatever method you

IFT 211 DIGITAL AND LOGIC DESIGN

11

chose to use, you should decide on it and write in your own dates

for working on each unit.

3. Once you have created your own study schedule, do everything

you can to stick to it. The major reason that students fail is that

they lag behind in their course work.

4. Turn to Unit 1 and read the introduction and the objectives for the

unit.

5. Assemble the study materials. Information about what you need

for a unit is given in the Overview at the beginning of each unit.

You will almost always need both the study unit you are working

on and one of your set of books on your desk at the same time

6. Work through the unit. The content of the unit itself has been

arranged to provide a sequence for you to follow. As you work

through the unit you will be instructed to read sections from your

set books or other articles. Use the unit to guide your reading.

7. Review the objectives for each study unit to confirm that you have

achieved them. If you feel unsure about any of the objectives,

review the study material or consult your tutor.

8. When you are confident that you have achieved a unit’s objectives,

you can then start on the next unit. Proceed unit by unit through

the course and try to pace your study so that you keep yourself on

schedule.

9. When you have submitted an assignment to your tutor for marking,

do not wait for its return before starting on the next unit. Keep to

your schedule. When the assignment is returned, pay particular

attention to your tutor’s comments, both on the tutor-marked

assignment form and also written on the assignment. Consult your

tutor as soon as possible if you have any questions or problems.

10. After completing the last unit, review the course and prepare

yourself for the final examination. Check that you have achieved

the unit objectives (listed at the beginning of each unit) and the

course objectives (listed in this Course Guide).

TUTORS AND TUTORIALS

There are 12 hours of tutorials provided in support of this course. You

will be notified of the dates, times and location of these tutorials, together

with the name and phone number of your tutor, as soon as you are

allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close

watch on your progress and on any difficulties you might encounter and

provide assistance to you during the course. You must mail or submit your

tutor-marked assignments to your tutor well before the due date (at least

two working days are required). They will be marked by your tutor and

returned to you as soon as possible.

IFT 211 DIGITAL AND LOGIC DESIGN

12

Do not hesitate to contact your tutor by telephone, or e-mail if you need

help. The following might be circumstances in which you would find help

necessary. Contact your tutor if:

• You do not understand any part of the study units or the assigned

readings

• You have difficulty with the self-tests or exercises

• You have a question or problem with an assignment, with your

tutor’s comments on an assignment or with the grading of an

assignment.

You should try your best to attend the tutorials. This is the only chance to

have face to face contact with your tutor and to ask questions which are

answered instantly. You can raise any problem encountered in the course

of your study. To gain the maximum benefit from course tutorials, prepare

a question list before attending them. You will learn a lot from

participating in discussions actively.

IFT 211 DIGITAL AND LOGIC DESIGN

13

Course Structure and Specification

Modules

and Units

ILOs: By the

end of this

unit, you

will be able

to:

Learning

Activities

Teaching

Technique

Required

Hours for

Study

Module 1

Unit 1:

Introducti

on to

Number

Systems

and Base

Conversio

n

• Unde

rstand the

fundamental

s of number

systems

including

binary,

decimal,

octal, and

hexadecimal

.

• Abilit

y to convert

numbers

between

different

number

systems.

• Lect

ure on the

basics of

number

systems and

their

significance

in digital

logic.

• Pract

ice exercises

on

converting

numbers

between

binary,

decimal,

octal, and

hexadecima

l systems.

• Visual

aids illustrating

the concept of

different

number

systems.

• Step-by-

step

demonstrations

of base

conversion

methods.

Approxim

ately 2

hours.

Unit 2:

Complem

ent

Systems

and Codes

• Unde

rstand the

concepts of

complement

systems

including

ones'

complement

and twos'

complement

.

• Famil

iarity with

different

codes such

as binary

coded

• Lect

ure on

complement

systems and

their

applications

in digital

logic.

• Pract

ice exercises

on

converting

numbers to

ones'

complement

and twos'

• Example

s illustrating the

concept of

complement

systems and

their relevance.

• Interacti

ve activities for

practicing code

conversion.

Approxim

ately 1.5

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

14

decimal

(BCD).

complement

.

Unit 3:

Digital

Logic

Gates

• Unde

rstand the

basic types

of digital

logic gates

including

AND, OR,

NOT,

NAND,

NOR, and

XOR.

• Famil

iarity with

truth tables

and logic

gate

operation.

• Lect

ure on the

different

types of

digital logic

gates and

their

behaviour.

• Hand

s-on

practice

constructing

truth tables

and

analysing

gate

operations.

• Visual

demonstrations

of gate behavior

using circuit

diagrams.

• Group

activities for

analyzing and

designing logic

circuits.

Approxim

ately 2

hours.

Unit 4:

Boolean

Algebra

• Unde

rstand the

fundamental

concepts of

Boolean

algebra

including

basic

theorems

and laws.

• Abilit

y to simplify

Boolean

expressions

using

algebraic

manipulatio

n.

• Lect

ure on the

principles of

Boolean

algebra and

its

application

in digital

logic.

• Pract

ice exercises

on

simplifying

Boolean

expressions

using

algebraic

laws.

• Step-by-

step examples

of Boolean

expression

simplification.

• Interacti

ve exercises for

practicing

Boolean

algebra

manipulation.

Approxim

ately 2.5

hours.

Unit 5:

Canonical

and

Standard

Forms

• Unde

rstand the

concepts of

canonical

and standard

forms of

Boolean

expressions.

• Lect

ure on

canonical

and standard

forms and

their

significance

in digital

• Visual

aids illustrating

the concept of

canonical and

standard forms.

• Step-by-

step

demonstrations

of converting

Approxim

ately 2

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

15

logic

design.

• Pract

ice exercises

on

converting

Boolean

expressions

to canonical

and standard

forms.

Boolean

expressions.

Module 2

Unit 1:

Karnaugh

Map

Method

• Unde

rstand the

concept of

Karnaugh

maps as a

graphical

method for

simplifying

Boolean

expressions.

• Abilit

y to use

Karnaugh

maps to

minimize

logic

functions.

• Lect

ure on the

principles of

Karnaugh

maps and

their

application

in logic

minimizatio

n.

• Pract

ice exercises

on using

Karnaugh

maps to

simplify

logic

expressions.

• Step-by-

step examples

of Karnaugh

map

simplification.

• Guided

practice

sessions for

solving

Karnaugh map

problems.

Approxim

ately 2.5

hours.

Unit 2:

Manipulat

ion and

Minimiza

tion

• Unde

rstand

various

methods for

manipulatin

g and

minimizing

Boolean

expressions.

• Abilit

y to apply

algebraic

laws and

theorems for

logic

• Lect

ure on

different

techniques

for

manipulatin

g and

minimizing

Boolean

expressions.

• Pract

ice exercises

on applying

algebraic

laws and

• Demonst

rations of

algebraic

manipulation

techniques for

logic

simplification.

• Interacti

ve sessions for

practicing

problem-

solving skills.

Approxim

ately 2.5

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

16

simplificatio

n.

theorems for

simplificati

on.

Unit 3:

Physical

Properties

of Gates

• Unde

rstand the

physical

properties of

logic gates

including

fan-in, fan-

out, and

propagation

delay.

• Famil

iarity with

timing

diagrams

• Lect

ure on the

physical

characteristi

cs of logic

gates and

their impact

on circuit

performanc

e.

• Disc

ussion on

timing

diagrams

• Visual

demonstrations

of gate

properties such

as fan-in, fan-

out, and

propagation

delay.

• Example

s illustrating

timing

diagrams

Approxim

ately 2

hours.

Module 3

Unit 1:

Combinat

ional

Circuits

and

Design

Procedure

• Unde

rstand the

concept of

combination

al circuits

and their

role in

digital logic

design.

• Abilit

y to follow

the design

procedure

for

combination

al circuits.

• Lect

ure on the

basics of

combination

al circuits

and their

design

methodolog

y.

• Pract

ice exercises

on

designing

combination

al circuits

using truth

tables and

logic gates.

• Step-by-

step examples

of

combinational

circuit design

procedures.

• Group

activities for

designing and

analyzing

combinational

circuits.

Approxim

ately 2.5

hours.

Unit 2:

Binary

Subtracto

r

• Unde

rstand the

operation

and design

of binary

subtractors

in digital

circuits.

• Lect

ure on the

principles of

binary

subtraction

and binary

subtractor

circuits.

• Visual

demonstrations

of binary

subtraction and

subtractor

circuit

operation.

• Guided

practice

Approxim

ately 2

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

17

• Abilit

y to design

binary

subtractors

using logic

gates.

• Pract

ice exercises

on

designing

binary

subtractors

using logic

gates.

sessions for

designing and

analyzing

binary

subtractors.

Unit 3:

Multiplex

ers

• Unde

rstand the

concept and

operation of

multiplexers

(MUX).

• Abilit

y to design

and analyse

multiplexer

circuits.

• Lect

ure on the

principles of

multiplexers

and their

applications

.

• Pract

ice exercises

on

designing

and

implementi

ng

multiplexer

circuits.

• Step-by-

step

explanations of

multiplexer

operation and

circuit design.

• Interacti

ve sessions for

designing and

testing

multiplexer

circuits.

Approxim

ately 2

hours.

Unit 4:

De-

multiplex

ers

• Unde

rstand the

concept and

operation of

de-

multiplexers

(DEMUX).

• Abilit

y to design

and analyse

de-

multiplexer

circuits.

• Lect

ure on the

principles of

de-

multiplexers

and their

applications

.

• Pract

ice exercises

on

designing

and

implementi

ng de-

multiplexer

circuits.

• Detailed

explanations of

de-multiplexer

operation and

circuit design.

• Hands-

on activities for

designing and

testing de-

multiplexer

circuits.

Approxim

ately 2

hours.

Unit 5:

Decoders
• Unde

rstand the

concept and

operation of

decoders.

• Lect

ure on the

principles of

decoders

and their

• Step-by-

step

explanations of

decoder

Approxim

ately 2

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

18

• Abilit

y to design

and analyse

decoder

circuits for

various

applications.

role in

digital

systems.

• Pract

ice exercises

on

designing

decoder

circuits for

different

scenarios.

operation and

circuit design.

• Interacti

ve sessions for

designing and

testing decoder

circuits.

Unit 6:

Encoders
• Unde

rstand the

concept and

operation of

encoders.

• Abilit

y to design

and analyse

encoder

circuits for

various

applications.

• Lect

ure on the

principles of

encoders

and their

role in

digital

systems.

• Pract

ice exercises

on

designing

encoder

circuits for

different

scenarios.

• Lecture

on the

principles of

encoders and

their role in

digital systems.

• Practice

exercises on

designing

encoder circuits

for different

scenarios.

Approxim

ately 2

hours.

Unit 7:

Latches
• Unde

rstand the

principles

and

operation of

latches in

sequential

circuits.

• Abilit

y to analyse

and design

latch circuits

for various

applications.

• Lect

ure on the

fundamental

s of latches

and their

significance

in

sequential

circuit

design.

• Pract

ice exercises

on

analyzing

and

designing

latch

circuits.

• Visual

demonstrations

of latch

operation and

circuit design.

• Guided

practice

sessions for

analyzing and

designing latch

circuits.

Approxim

ately 2

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

19

Unit 8:

Flip-

Flops

• Unde

rstand the

principles

and

operation of

flip-flops in

sequential

circuits.

• Abilit

y to analyze

and design

flip-flop

circuits for

various

applications.

• Lect

ure on the

fundamental

s of flip-

flops and

their role in

sequential

circuit

design.

• Pract

ice exercises

on

analyzing

and

designing

flip-flop

circuits.

• Lecture

on the

fundamentals

of flip-flops and

their role in

sequential

circuit design.

• Practice

exercises on

analyzing and

designing flip-

flop circuits.

Approxim

ately 2

hours.

Module 4 . . .

Unit 1:

Sequentia

l Circuits

• Unde

rstand the

basic

architectural

differences

between

combination

al and

sequential

circuits.

• Famil

iarity with

the

operation

and

characteristi

cs of

sequential

circuits.

• Lect

ure on the

fundamental

s of

sequential

circuits and

their

architectural

distinctions.

• Disc

ussion on

the

operation

and

characteristi

cs of

sequential

circuits.

• Visual

aids illustrating

the differences

between

combinational

and sequential

circuits.

• Example

s demonstrating

the behavior

and

applications of

sequential

circuits.

Approxim

ately 2.5

hours.

Unit 2:

Conversio

n of Flip-

Flops

• Unde

rstand the

characteristi

cs and

operation of

different

types of flip-

flops.

• Lect

ure on the

characteristi

cs and

behavior of

various flip-

flops

including

• Step-by-

step

explanations of

flip-flop

characteristics

and conversion

methods.

Approxim

ately 2

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

20

• Abilit

y to convert

flip-flops

from one

type to

another.

SR, JK, D,

and T flip-

flops.

• Pract

ice exercises

on

converting

flip-flops

from one

type to

another.

• Guided

practice

sessions for

converting flip-

flops..

Unit 3:

Registers
• Unde

rstand the

concept and

operation of

registers in

digital

systems.

• Abilit

y to design

and analyze

register

circuits for

various

applications.

• Lect

ure on the

principles of

registers and

their

significance

in digital

systems.

• Pract

ice exercises

on

designing

and

implementi

ng register

circuits.

• Visual

demonstrations

of register

operation and

circuit design.

• Hands-

on activities for

designing and

testing register

circuits.

Approxim

ately 2

hours.

Unit 4:

Counters
• Unde

rstand the

principles

and

operation of

counters in

digital

systems.

• Abilit

y to design

and analyze

counter

circuits for

various

counting

applications.

• Lect

ure on the

fundamental

s of counters

and their

applications

.

• Pract

ice exercises

on

designing

and

implementi

ng counter

circuits.

• Detailed

explanations of

counter

operation and

circuit design.

• Interacti

ve sessions for

analyzing and

designing

counter circuits.

Approxim

ately 2

hours.

Module 5 . . .

IFT 211 DIGITAL AND LOGIC DESIGN

21

Unit 1:

Memory

Devices

and

Classifica

tion

• Unde

rstand the

fundamental

s of memory

devices

including

ROM,

RAM, and

their

classificatio

n.

• Abilit

y to classify

different

types of

memory

devices

based on

their

characteristi

cs and

applications.

• Lect

ure on the

principles of

memory

devices and

their

classificatio

n.

• Disc

ussion on

the

characteristi

cs and

applications

of different

types of

memory.

• Visual

aids illustrating

the different

types of

memory

devices and

their

classification.

• Real-

world examples

of memory

applications.

Approxim

ately 2.5

hours.

Unit 2:

Program

mable

Logic

Array

(PLAs)

• Unde

rstand the

concept and

operation of

Programmab

le Logic

Arrays

(PLAs).

• Abilit

y to design

and

implement

logic

functions

using PLAs.

• Lect

ure on the

principles of

PLAs and

their

architecture.

• Pract

ice exercises

on

designing

and

programmin

g PLAs for

specific

logic

functions.

• Step-by-

step

explanations of

PLA

architecture and

operation.

• Guided

practice

sessions for

designing and

programming

PLAs.

Approxim

ately 2

hours.

Unit 3:

Program

mable

Logic

Devices

(PLDs)

• Unde

rstand the

concept and

operation of

Programmab

le Logic

Devices

(PLDs).

• Lect

ure on the

principles of

PLDs and

their

architecture.

• Pract

ice exercises

• Visual

demonstrations

of PLD

architecture and

configuration

methods.

• Hands-

on activities for

Approxim

ately 2

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

22

• Abilit

y to program

and

configure

PLDs for

specific

logic

functions.

on

programmin

g and

configuring

PLDs using

hardware

description

languages.

programming

and testing

PLDs.

Unit 4:

Field-

Program

mable

Gate

Arrays

(FPGAs)

• Unde

rstand the

concept and

operation of

Field-

Programmab

le Gate

Arrays

(FPGAs).

• Abilit

y to program

and

configure

FPGAs for

complex

digital

systems.

• Lect

ure on the

principles of

FPGAs and

their

architecture.

• Pract

ice exercises

on

programmin

g and

configuring

FPGAs for

various

applications

.

• Detailed

explanations of

FPGA

architecture and

configuration

methods.

• Interacti

ve sessions for

programming

and testing

FPGAs.

Approxim

ately 2.5

hours.

IFT 211 DIGITAL AND LOGIC DESIGN

23

CONTENT PAGE

Module 1 Introduction to Digital Logic Design 25

Unit 1 Introduction to Number Systems and Base Conversion .. 25

Unit 2 Complement Systems and Codes 36

Unit 3 Digital Logic Gates 44

Unit 4 Boolean Algebra 53

Unit 5 Canonical & Standard Forms 56

Module 2 Minimization Techniques 63

Unit 1 The Karnaugh Map Method 63

Unit 2 Manipulation and Minimisation 71

Unit 3 Physical properties of gates 76

Module 3 Combinational and Sequential Circuits 82

Unit 1 Combinational Circuits and Design Procedure 82

Unit 2 Binary Subtractor 87

Unit 3 Multiplexers 91

Unit 4 De-Multiplexers 98

Unit 5 Decoder 104

Unit 6 Encoders 108

Unit 7 Latches 114

Unit 8 Flip-Flops 117

Module 4 Sequential Circuits 126

Unit 1 Sequential Circuits 126

Unit 2 Conversion of Flip-Flops 127

Unit 3 Registers 135

Unit 4 Counters 142

Module 5 Memory Devices and Programmable Logic 149

Unit 1: Memory Devices and Classification 149

Unit 2: Programmable Logic Array 152

Unit 3: Programmable Logic Device 155

Unit 4: Field-Programmable Gate Arrays 156

MAIN

COURSE

IFT 211 DIGITAL AND LOGIC DESIGN

24

Module 1 Introduction to Digital Logic Design

Unit 1 Introduction to Number Systems and Base Conversion

Unit 2 Complement Systems and Codes

Unit 3 Digital Logic Gates

Unit 4 Boolean Algebra

Unit 5 Canonical and Standard Forms

Unit 1 Introduction to Number Systems and Base Conversion

What is a Digital System?

Imagine digital systems as interconnected building blocks, handling

information in a special way. These systems work with discrete chunks of

data, represented in binary form - ones and zeros. You encounter digital

systems in many everyday gadgets like calculators, computers, and even

digital watches.

A Digital system is an interconnection of digital modules and it is a

system that manipulates discrete elements of information that is

represented internally in the binary form.

Digital Systems Characteristics

Where do you find Digital System? You encounter digital systems in

many everyday gadgets like calculators, computers, and even digital

watches.

What makes digital systems ticks? Let's peek inside the digital world to

see what sets it apart:

• Digital systems handle information bit by bit, much like

assembling a puzzle piece by piece. Each piece, whether it's a

number or a letter, fits snugly into the bigger picture, allowing the

system to process and understand the information it receives.

• Digital systems communicate using signals, which act like

messengers delivering important information. These signals travel

through the system, ensuring that data reaches its destination

accurately and efficiently. It's similar to how we use signals like

Wi-Fi or Bluetooth to connect devices and share information.

• Picture digital systems as giant word puzzles, where numbers and

letters are the building blocks. From counting numbers to alphabet

letters, these systems can handle a wide range of data, making them

versatile tools in our digital world.

• At the core of digital communication is the binary code, a language

made up of just two symbols: 0 and 1. Much like a traffic light with

IFT 211 DIGITAL AND LOGIC DESIGN

25

only two options - green for go and red for stop - digital signals

use this binary language to convey information. It's a simple yet

powerful system that forms the backbone of digital technology.

• Every signal in a digital system represents a single binary digit,

known as a bit. Think of bits as the smallest units of information,

like tiny switches that can be either on (1) or off (0). Just like how

a single Lego brick contributes to a larger construction, each bit

plays a crucial role in forming the digital landscape we interact

with every day.

Comparison of Analog Systems and Digital Systems

• Representation of Information:

Analog Systems: Analog systems represent data using continuous signals

that vary over time. These signals can take on any value within a range.

Examples include analogue audio signals from a microphone, analogue

temperature sensors, and analogue clocks.

Digital Systems: Digital systems represent data using discrete signals

that have distinct, quantized values. These values are usually binary,

represented by 0s and 1s. Examples include digital audio files, digital

thermometers, and digital clocks.

• Accuracy and Precision:

Analog Systems: Analog systems can suffer from noise and distortion,

which can reduce accuracy and precision, especially over long distances

or time periods. However, analogue systems can often capture nuances

that digital systems may miss.

Digital Systems: Digital systems are highly resistant to noise and

distortion, providing high accuracy and precision. Digital signals can be

transmitted over long distances without significant degradation.

• Processing and Manipulation:

Analog Systems: Analog signals are processed using analogue circuits,

which often require specialized components such as operational

amplifiers and filters. Manipulating analogue signals may involve

techniques like amplification, filtering, and modulation.

Digital Systems: Digital signals are processed using digital circuits,

typically implemented using digital logic gates and microprocessors.

Manipulating digital signals involves operations like encoding, decoding,

compression, and encryption.

IFT 211 DIGITAL AND LOGIC DESIGN

26

Advantages of Digital System over Analog System

• Ease of Storage and Transmission: Digital signals can be easily

stored, transmitted, and replicated without degradation using digital

storage devices and communication protocols. Digital storage devices

offer higher storage densities and faster access times compared to

analogue storage mediums.

• Robustness: Digital systems are more robust against

environmental factors such as temperature variations and electromagnetic

interference. They can withstand harsh operating conditions better than

analogue systems, making them suitable for use in challenging

environments.

• Integration and Compatibility: Digital systems can integrate

easily with other digital devices and systems, facilitating interoperability

and compatibility. Digital communication protocols and standards ensure

seamless connectivity between different digital devices and platforms.

• Cost-Effectiveness: While digital systems may have higher initial

implementation costs due to the need for digital logic circuits and

processors, they often offer more cost-effective solutions in the long run.

Digital technology enables higher levels of automation, efficiency, and

scalability, leading to reduced operational costs over time.

Number System

Understanding Number Systems: The Foundation of Counting and

Computing;

Number systems serve as the backbone of counting and computation,

providing a structured way to represent quantities. In the digital realm,

modern computers communicate and operate using binary numbers,

which consist of only two digits: 0 and 1. However, humans typically rely

on the decimal number system in everyday life.

Decimal vs. Binary: Consider the decimal number 18. In binary, it is

represented as 10010. Notice how binary numbers require more digits to

represent the same value compared to decimal numbers. For larger

numbers, dealing with lengthy binary strings becomes cumbersome. To

address this issue, alternative number systems have emerged:

1. Octal Number System (Base 8): This system uses digits from 0

to 7, providing a more compact representation for large numbers

compared to binary.

2. Hexadecimal Number System (Base 16): Hexadecimal numbers

employ digits from 0 to 9, along with additional symbols from A

to F. This system offers an even more concise representation,

making it particularly useful in computer science and digital

electronics.

IFT 211 DIGITAL AND LOGIC DESIGN

27

3. Binary Coded Decimal (BCD) System: BCD is a binary-encoded

representation of decimal numbers. Unlike pure binary, BCD uses

groups of binary digits to represent each decimal digit, offering a

compromise between binary and decimal systems.

Defining Number Systems: To understand any number system, we must

specify its base, which determines the total number of available digits.

For example, the binary system has a base of 2, while the decimal system

has a base of 10. In any number system, the first digit is always zero, and

the last digit is always one less than the base.

Binary number system:

Understanding the Binary Number System: Cracking the Code of 0s and

1s;

The binary number system, with a radix of 2, is the language of

computers, relying solely on two digits: 0 and 1. In this system, the weight

of each digit is expressed as a power of 2.

Breaking Down Binary:

1. Radix of 2: In binary, we work with a base of 2, meaning there are

only two available digits: 0 and 1. This simplicity allows for efficient

digital communication and computation.

IFT 211 DIGITAL AND LOGIC DESIGN

28

2. Significant Bits: Within a binary number, the leftmost bit holds

the highest weight and is known as the Most Significant Bit (MSB).

Conversely, the rightmost bit carries the lowest weight and is called the

Least Significant Bit (LSB). These bits play crucial roles in determining

the value of the binary number.

Putting Binary into Practice: For example, let's convert the binary

number 1001.012 into its decimal equivalent:

1001.012 = (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20) + (0 × 2-1) + (1 × 2-2)

1001.012 = (1 × 8) + (0 × 4) + (0 × 2) + (1 × 1) + (0 × 0.5) + (1 × 0.25)

1001.012 = 8 + 0 + 0 + 1 + 0 + 0.25

1001.012 = 9.2510

Decimal Number System: The decimal system, familiar to us all, use ten

symbols: 0 through 9, creating a base of 10. Every time we count from 0

to 9 and start again, we're traversing one decimal place.

Octal Number System: Digital systems primarily work with binary

numbers, which can get lengthy. To simplify, we use shorthand notations

like octal and hexadecimal. Octal, with a base of 8, utilizes the first eight

digits of the decimal system (0 through 7).

Hexadecimal Number System: Hexadecimal, with a base of 16, expands

our numerical horizons even further. It embraces 16 symbols, including

the decimal digits 0 through 9 and the letters A through F. These letters

represent the values 10 through 15, offering a convenient way to express

large numbers in a compact format.

Number Base Conversions

Navigating Number Base Conversions: Bridging the gap between

Humans and Computers. Humans and computers each have their

preferred numerical languages: decimal for us and binary for computers.

However, translating between these systems is essential for

communication between humans and machines.

i.Conversion of Binary Numbers to Octal Numbers:

• Divide the binary number into groups of three digits (23), starting

from the right.

• Convert each group of three binary digits into its octal equivalent.

• Concatenate the octal equivalents of each group to get the final

octal number.

IFT 211 DIGITAL AND LOGIC DESIGN

29

ii.Conversion of Binary Numbers to Hexadecimal Numbers:

• Divide the binary number into groups of four digits (24), starting

from the right.

• Convert each group of four binary digits into its hexadecimal

equivalent.

• Concatenate the hexadecimal equivalents of each group to get the

final hexadecimal number.

iii.Octal to Binary Conversion:

• Convert each octal digit into its three-bit binary equivalent.

• Concatenate the binary equivalents of each octal digit to get the

final binary number.

iv.Hexadecimal to Binary Conversion:

• Convert each hexadecimal digit into its four-bit binary equivalent.

• Concatenate the binary equivalents of each hexadecimal digit to

get the final binary number.

IFT 211 DIGITAL AND LOGIC DESIGN

30

v.Octal to Decimal Conversion:

• Multiply each octal digit by 8k, where k is the position of the digit

(starting from the right).

• Sum up the products to obtain the decimal equivalent.

• Decimal to Octal Conversion:

• Divide the decimal number by 8 successively and record the

remainders.

• The remainders, read from bottom to top, give the octal equivalent

of the decimal number.

IFT 211 DIGITAL AND LOGIC DESIGN

31

vi.Hexadecimal to Decimal Conversion:

• Multiply each hexadecimal digit by 16k, where k is the position of

the digit (starting from the right).

• Sum up the products to obtain the decimal equivalent.

• Decimal to Hexadecimal Conversion:

• Divide the decimal number by 16 successively and record the

remainders.

• Convert each remainder greater than 9 to its hexadecimal

equivalent (A=10, B=11, ..., F=15).

• The remainders, read from bottom to top, give the hexadecimal

equivalent of the decimal number.

IFT 211 DIGITAL AND LOGIC DESIGN

32

vii.Octal to Hexadecimal Conversion:

• Convert the octal number to binary.

• Convert the binary number to hexadecimal.

viii.Hexadecimal to Octal Conversion:

• Convert the hexadecimal number to binary.

• Convert the binary number to octal.

ix.One’s Complement and Two’s Complement:

IFT 211 DIGITAL AND LOGIC DESIGN

33

• One's Complement: Invert all bits in the binary number (0s

become 1s and vice versa) to get the one's complement.

• Two's Complement: Take the one's complement and add 1 to the

result to obtain the two's complement.

SELF ASSESMENT EXERCISES

Multiple Choice Questions

1. What is the base of the binary number system?

A. 8

B. 10

C. 2

D. 16

Answer: C

2. Which number system uses digits 0–7?

A. Decimal

B. Binary

C. Hexadecimal

D. Octal

Answer: D

3. What is the binary equivalent of decimal 18?

A. 10010

B. 11001

C. 10100

D. 11100

Answer: A

4. What is the most significant bit (MSB) in binary?

A. Rightmost bit

B. Leftmost bit

C. Middle bit

D. Least significant bit

Answer: B

5. Which system uses digits and letters A–F?

IFT 211 DIGITAL AND LOGIC DESIGN

34

A. Binary

B. Octal

C. Hexadecimal

D. Decimal

Answer: C

6. What is the decimal equivalent of binary 1001.01?

A. 9.25

B. 10.5

C. 8.75

D. 9.5

Answer: A

7. What is the first step in converting binary to hexadecimal?

A. Divide by 8

B. Group digits in threes

C. Group digits in fours

D. Multiply by 16

Answer: C

8. What does BCD stand for?

A. Binary Code Decimal

B. Binary Conversion Data

C. Base Code Decimal

D. Binary Count Digit

Answer: A

9. What is the base of the decimal system?

A. 2

B. 8

C. 10

D. 16

Answer: C

10. Which conversion method involves dividing by 8 and reading

remainders?

A. Decimal to Binary

B. Decimal to Octal

C. Binary to Hex

D. Hex to Decimal

Answer: B

Fill in the Blank Questions

1. The binary system uses only __________ digits. → two

2. The hexadecimal system includes digits 0–9 and letters

__________. → A to F

3. The leftmost bit in a binary number is called the __________. →

MSB

4. BCD stands for __________. → Binary Coded Decimal

5. To convert decimal to octal, divide by __________. → 8

IFT 211 DIGITAL AND LOGIC DESIGN

35

Unit 2 Complement Systems and Codes

Binary codes are methods of representing data using binary digits (0s and

1s). They are widely used in digital systems, communication systems, and

computing to encode information for storage, processing, and

transmission. Various types of binary codes serve different purposes, each

with its own rules and characteristics.

1. Gray Code (Reflected Binary Code):

Gray Code, also known as Reflected Binary Code, is a binary numeral

system where two consecutive values differ by only one bit. It is designed

to minimize errors in digital communication and analog-to-digital

conversion systems.

Properties:

• Adjacent Gray code values differ by only one bit, reducing the

likelihood of errors in transmission or signal conversion.

• The Gray code sequence is not unique; there are multiple possible

sequences of Gray codes for any given number of bits.

Applications:

• Used in rotary encoders, where mechanical imperfections can

cause signal jitter. Gray code ensures that only one bit changes at a time,

minimizing misinterpretation.

• Employed in digital communication systems to reduce the effects

of signal noise and errors during transmission.

• Example: The 3-bit Gray code sequence is

000,001,011,010,110,111,101,100. Note that adjacent codes differ

by only one bit.

IFT 211 DIGITAL AND LOGIC DESIGN

36

2. Binary-Coded Decimal (BCD):

Binary-Coded Decimal (BCD) is a binary encoding of decimal

numbers, where each decimal digit is represented by its equivalent

4-bit binary code. It is commonly used in digital systems to

facilitate arithmetic operations involving decimal numbers.

Properties:

• Each decimal digit is represented by a unique 4-bit binary code,

allowing for direct conversion between decimal and binary

representations.

• BCD codes 1010 through 1111 are invalid to avoid ambiguity, as

they do not represent valid decimal digits.

Applications:

• Used in digital displays, such as LED or LCD displays in

calculators, clocks, and electronic instruments, to accurately

represent decimal numbers.

• Employed in financial systems and calculators for precise

arithmetic calculations involving monetary values.

• Example: The BCD representation of the decimal number 25 is

0010 0101, where each group of four bits represents a decimal digit.

Excess-3 Code (XS-3):

Excess-3 Code, also known as XS-3 or XS-3-2421 code, is a self-

complementary binary code used to represent decimal digits. Each

decimal digit is represented by its 4-bit binary equivalent, obtained by

adding 3 to the digit and converting the result to binary.

Properties:

• XS-3 is self-complementary, meaning that the code for n is the

complement of the code for 9 − n.

• It simplifies arithmetic operations in digital systems by providing

a direct representation of decimal digits in binary form.

Applications:

IFT 211 DIGITAL AND LOGIC DESIGN

37

• Used in digital arithmetic circuits, such as adders and subtractors,

to perform arithmetic operations on decimal numbers in binary

form.

• Employed in calculators and digital counters for accurate

arithmetic calculations and counting operations.

Example: The excess-3 code for the decimal number 7 is obtained by

adding 3 to 7, resulting in 10, which in binary is 1010.

3. ASCII (American Standard Code for Information

Interchange):

ASCII is a character encoding standard that assigns unique binary codes

to characters, control characters, and symbols commonly used in

computers and communication equipment.

Properties:

• Originally defined with 7 bits, ASCII codes have been extended to

use 8 bits, allowing for the representation of 128 characters.

• ASCII encodes uppercase and lowercase letters, digits,

punctuation marks, control characters (e.g., newline, carriage

return), and special symbols.

Applications:

• Used in computing, telecommunications, and data transmission to

represent text-based information in digital form.

• Employed in text-based communication protocols, file formats,

and programming languages for character encoding and

manipulation.

Example: The ASCII code for the uppercase letter 'A' is 01000001, while

the ASCII code for the lowercase letter 'a' is 01100001.

IFT 211 DIGITAL AND LOGIC DESIGN

38

Error Detecting Codes

Error detecting codes are techniques used to detect errors that occur

during the transmission or storage of data. These codes introduce

redundancy into the data, allowing receivers to detect whether errors have

occurred.

Properties:

• Error detecting codes add extra bits, called parity bits or

checksums, to the data based on specific algorithms.

• If errors occur during transmission or storage, the received data

will not match the expected data, indicating the presence of errors.

• Error detecting codes can identify the presence of errors but cannot

correct them.

Types:

• Parity Check: Involves adding a single parity bit to the data,

making the total number of bits (including the parity bit) either

even or odd. Commonly used for detecting single-bit errors.

• Checksums: Calculated by summing all the bits or bytes of the

data and appending the result to the data. Checksums can detect

errors caused by multiple-bit errors or burst errors.

Example: Consider the data 1011010 with even parity. The parity bit is

calculated as the XOR (exclusive OR) of all the data bits: 1 ⊕ 0 ⊕ 1 ⊕

1 ⊕ 0 ⊕ 1 ⊕ 0 = 0. So, the transmitted data becomes 10110100. If a

single bit error occurs during transmission, such as changing the last bit

to 1, the parity check at the receiver will detect the error because the

number of ones in the received data (odd) does not match the expected

even parity.

Error Correcting Codes

IFT 211 DIGITAL AND LOGIC DESIGN

39

Error correcting codes are techniques used to detect and correct errors that

occur during the transmission or storage of data. These codes introduce

redundancy into the data and provide mechanisms for detecting and

correcting errors.

Properties:

• Error correcting codes add additional redundant bits to the data,

allowing receivers to both detect and correct errors.

• These codes are more complex than error detecting codes and

require additional computational overhead.

• Error correcting codes can correct a certain number of errors based

on their design and the amount of redundancy introduced.

Types:

• Hamming Codes: A class of error-correcting codes capable of

correcting single-bit errors and detecting double-bit errors. Hamming

codes add parity bits at specific positions in the data to form code words

that can detect and correct errors.

• BCH Codes: Bose-Chaudhuri-Hocquenghem (BCH) codes are a

class of cyclic error-correcting codes capable of correcting multiple errors

in data. They are widely used in applications where high reliability is

required, such as digital communication and storage systems.

Example: Consider a Hamming code with parity bits. Suppose we have

the data 1101001. Adding parity bits at positions 1, 2, and 4, we get the

code word 01101001. If a single bit error occurs during transmission, the

receiver can use the parity bits to identify and correct the error, ensuring

that the received data matches the original transmitted data.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

1. What is the one’s complement of binary 1010?

A. 0101

B. 1111

C. 0101

D. 1001

2. What is the two’s complement of binary 1010?

A. 0101

B. 0110

C. 1001

D. 1100

Answer: B

3. Which code changes only one bit between consecutive values?

A. ASCII

IFT 211 DIGITAL AND LOGIC DESIGN

40

B. Gray Code

C. BCD

D. Excess-3

Answer: B

4. What is the BCD representation of decimal 25?

A. 11001

B. 0010 0101

C. 1010 0101

D. 0100 0011

Answer: B

5. Excess-3 code adds __________ to each decimal digit.

A. 2

B. 3

C. 4

D. 5

Answer: B

6. ASCII uses how many bits originally?

A. 6

B. 7

C. 8

D. 10

Answer: B

7. Which code is self-complementary?

A. BCD

B. ASCII

C. Excess-3

D. Gray Code

Answer: C

8. What is the ASCII code for uppercase 'A'?

A. 01000001

B. 01100001

C. 00100001

D. 11000001

Answer: A

9. What is the main purpose of error detecting codes?

A. To compress data

B. To detect transmission errors

C. To encrypt data

D. To store data

Answer: B

10. Which code can correct single-bit errors?

A. Parity

B. Hamming

C. ASCII

D. Gray

IFT 211 DIGITAL AND LOGIC DESIGN

41

Answer: B

Fill in the Blank Questions

1. One’s complement is obtained by __________ all bits. →

inverting

2. Two’s complement is one’s complement plus __________. → 1

3. Gray code differs by only __________ bit between values. → one

4. ASCII originally used __________ bits. → 7

5. Hamming code can correct __________-bit errors. → single

IFT 211 DIGITAL AND LOGIC DESIGN

42

Unit 3 Digital Logic Gates

Digital electronic circuits operate with voltages of two logic levels

namely Logic Low and Logic High. The range of voltages corresponding

to Logic Low is represented with ‘0’. Similarly, the range of voltages

corresponding to Logic High is represented with ‘1’.

The basic digital electronic circuit that has one or more inputs and single

output is known as Logic gate. Hence, the Logic gates are the building

blocks of any digital system. We can classify these Logic gates into the

following three categories.

• Basic gates

• Universal gates

• Special gates

Now, let us discuss about the Logic gates come under each category one

by one.

Basic Gates

In earlier chapters, we learnt that the Boolean functions can be

represented either in sum of products form or in product of sums form

based on the requirement. So, we can implement these Boolean functions

by using basic gates. The basic gates are AND, OR & NOT gates.

AND gate

An AND gate is a digital circuit that has two or more inputs and produces

an output, which is the logical AND of all those inputs. It is optional to

represent the Logical AND with the symbol ‘.’.

The following table shows the truth table of 2-input AND gate.

Here A, B are the inputs and Y is the output of two input AND gate. If

both inputs are ‘1’, then only the output, Y is ‘1’. For remaining

combinations of inputs, the output, Y is ‘0’.

IFT 211 DIGITAL AND LOGIC DESIGN

43

The following figure shows the symbol of an AND gate, which is having

two inputs A, B and one output, Y.

This AND gate produces an output Y, which is the logical AND of two

inputs A, B. Similarly, if there are ‘n’ inputs, then the AND gate produces

an output, which is the logical AND of all those inputs. That means, the

output of AND gate will be ‘1’, when all the inputs are ‘1’.

OR gate

An OR gate is a digital circuit that has two or more inputs and produces

an output, which is the logical OR of all those inputs. This logical OR is

represented with the symbol ‘+’.

The following table shows the truth table of 2-input OR gate.

Here A, B are the inputs and Y is the output of two input OR gate. If both

inputs are ‘0’, then only the output, Y is ‘0’. For remaining combinations

of inputs, the output, Y is ‘1’.

The following figure shows the symbol of an OR gate, which is having

two inputs A, B and one output, Y.

This OR gate produces an output Y, which is the logical OR of two inputs

A, B. Similarly, if there are ‘n’ inputs, then the OR gate produces an

output, which is the logical OR of all those inputs. That means, the output

of an OR gate will be ‘1’, when at least one of those inputs is ‘1’.

NOT gate

IFT 211 DIGITAL AND LOGIC DESIGN

44

A NOT gate is a digital circuit that has single input and single output. The

output of NOT gate is the logical inversion of input. Hence, the NOT gate

is also called as inverter.

The following table shows the truth table of NOT gate.

Here A and Y are the input and output of NOT gate respectively. If the

input, A is ‘0’, then the output, Y is ‘1’. Similarly, if the input, A is ‘1’,

then the output, Y is ‘0’.

The following figure shows the symbol of NOT gate, which is having one

input, A and one output, Y. This NOT gate produces an output Y, which

is the complement of input, A.

Universal gates

NAND & NOR gates are called as universal gates. Because we can

implement any Boolean function, which is in sum of products form by

using NAND gates alone. Similarly, we can implement any Boolean

function, which is in product of sums form by using NOR gates alone.

NAND gate

IFT 211 DIGITAL AND LOGIC DESIGN

45

NAND gate is a digital circuit that has two or more inputs and produces

an output, which is the inversion of logical AND of all those inputs. The

following table shows the truth table of 2-input NAND gate Here A, B

are the inputs and Y is the output of two input NAND gate. When both

inputs are ‘1’, the output, Y is ‘0’. If at least one of the input is zero, then

the output, Y is ‘1’. This is just opposite to that of two input AND gate

operation. NAND gate operation is same as that of AND gate followed

by an inverter. That’s why the NAND gate symbol is represented like that.

The following image shows the symbol of NAND gate, which is having

two inputs A, B and one output, Y.

NOR gate

NOR gate is a digital circuit that has two or more inputs and produces an

output, which is the inversion of logical OR of all those inputs.

The following table shows the truth table of 2-input NOR gate

Here A, B are the inputs and Y is the output. If both inputs are ‘0’, then

the output, Y is ‘1’. If at least one of the input is ‘1’, then the output, Y is

‘0’. This is just opposite to that of two input OR gate operation.

IFT 211 DIGITAL AND LOGIC DESIGN

46

The following figure shows the symbol of NOR gate, which is having two

inputs A, B and one output, Y.

NOR gate operation is same as that of OR gate followed by an inverter.

That’s why the NOR gate symbol is represented like that.

‘

Special Gates

Ex-OR & Ex-NOR gates are called as special gates. Because, these two

gates are special cases of OR & NOR gates.

Ex-OR gate

The full form of Ex-OR gate is Exclusive-OR gate. Its function is same

as that of OR gate except for some cases, when the inputs having even

number of ones.

The following table shows the truth table of 2-input Ex-OR gate.

Here A, B are the inputs and Y is the output of two input Ex-OR gate. The

truth table of Ex-OR gate is same as that of OR gate for first three rows.

The only modification is in the fourth row. That means, the output Y is

zero instead of one, when both the inputs are one, since the inputs having

even number of ones.

Therefore, the output of Ex-OR gate is ‘1’, when only one of the two

inputs is ‘1’. And it is zero, when both inputs are same.

Below figure shows the symbol of Ex-OR gate, which is having two

inputs A, B and one output, Y.

IFT 211 DIGITAL AND LOGIC DESIGN

47

Ex-OR gate operation is similar to that of OR gate, except for few

combinations of inputs. That’s why the Ex-OR gate symbol is represented

like that. The output of Ex-OR gate is ‘1’, when odd number of ones

present at the inputs. Hence, the output of Ex-OR gate is also called as

an odd function.

Ex-NOR gate

The full form of Ex-NOR gate is Exclusive-NOR gate. Its function is

same as that of NOR gate except for some cases, when the inputs having

even number of ones. The following table shows the truth table of 2-

input Ex-NOR gate.

Here A, B are the inputs and Y is the output. The truth table of Ex-NOR

gate is same as that of NOR gate for first three rows. The only

modification is in the fourth row. That means, the output is one instead of

zero, when both the inputs are one.

Therefore, the output of Ex-NOR gate is ‘1’, when both inputs are same.

And it is zero, when both the inputs are different.

The following figure shows the symbol of Ex-NOR gate, which is having

two inputs A, B and one output, Y.

Ex-NOR gate operation is similar to that of NOR gate, except for few

combinations of inputs. That’s why the Ex-NOR gate symbol is

represented like that. The output of Ex-NOR gate is ‘1’, when even

number of ones present at the inputs. Hence, the output of Ex-NOR gate

is also called as an even function.

IFT 211 DIGITAL AND LOGIC DESIGN

48

From the above truth tables of Ex-OR & Ex-NOR logic gates, we can

easily notice that the Ex-NOR operation is just the logical inversion of

Ex-OR operation.

Basic Theorem and Properties

Basic Laws of Boolean Algebra: Following are the three basic laws of

Boolean Algebra:

• Commutative law

• Associative law

• Distributive law

Commutative Law

If any logical operation of two Boolean variables give the same result

irrespective of the order of those two variables, then that logical operation

is said to be Commutative. The logical OR & logical AND operations of

two Boolean variables x & y are shown below:

x + y = y + x

x.y = y.x

The symbol ‘+’ indicates logical OR operation. Similarly, the symbol ‘.’

indicates logical AND operation and it is optional to represent.

Commutative law obeys for logical OR & logical AND operations.

Associative Law

If a logical operation of any two Boolean variables is performed first and

then the same operation is performed with the remaining variable gives

the same result, then that logical operation is said to be Associative. The

logical OR & logical AND operations of three Boolean variables x, y &

z are shown below.

(x + y) + z = x + (y + z)

(x.y).z = x.(y.z)

Associative law obeys for logical OR & logical AND operations.

Distributive Law

If any logical operation can be distributed to all the terms present in the

Boolean function, then that logical operation is said to be Distributive.

The distribution of logical OR & logical AND operations of three Boolean

variables x, y & z are shown below.

x.(y + z)= (x.y) + (x.z)

x + (y.z) = (x + y).(x + z)

Distributive law obeys for logical OR and logical AND operations.

These are the Basic laws of Boolean algebra. We can verify these laws

easily, by substituting the Boolean variables with ‘0’ or ‘1’.

IFT 211 DIGITAL AND LOGIC DESIGN

49

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

1. Which logic gate outputs true only when all inputs are true?

A. OR

B. AND

C. NOT

D. XOR

Answer: B

2. What is the output of an OR gate when both inputs are 0?

A. 0

B. 1

C. Undefined

D. Same as input

Answer: A

3. Which gate inverts the input signal?

A. AND

B. OR

C. NOT

D. NAND

Answer: C

4. What is the output of a NAND gate when both inputs are 1?

A. 1

B. 0

C. Undefined

D. Same as input

Answer: B

5. Which gate gives a true output only when inputs are different?

A. AND

B. OR

C. XOR

D. NOR

Answer: C

6. What is the symbol used to represent a NOT gate?

A. ∧

B. ∨

C. ¬

D. ⊕

Answer: C

7. Which gate is the inverse of the OR gate?

A. AND

B. NOR

C. XOR

D. NAND

Answer: B

8. What is the Boolean expression for an AND gate?

A. A + B

IFT 211 DIGITAL AND LOGIC DESIGN

50

B. A · B

C. A ⊕ B

D. ¬A

Answer: B

9. Which gate is considered a universal gate?

A. XOR

B. NAND

C. OR

D. NOT

Answer: B

10. What is the output of a NOR gate when both inputs are 0?

A. 0

B. Undefined

C. 1

D. Same as input

Answer: C

 Fill in the Blank Questions

1. The __________ gate outputs true only when all inputs are true.

→ AND

2. The __________ gate inverts the input signal. → NOT

3. A __________ gate gives true output only when inputs differ. →

XOR

4. The Boolean expression for an AND gate is __________. → A · B

5. The __________ gate is known as a universal gate. → NAND

IFT 211 DIGITAL AND LOGIC DESIGN

51

Unit 4: Boolean Algebra

A Boolean algebra is a closed algebraic system containing a set K of two

or more elements and the two operators · and + which refer to logical

AND and logical OR

• x + 0 = x

• x · 0 = 0

• x + 1 = 1

• x · 1 = 1

• x + x = x

• x · x = x

• x + x’ = x

• x · x’ = 0

• x + y = y + x

• xy = yx

• x + (y + z) = (x + y) + z

• x (yz) = (xy) z

• x (y + z) = xy + xz

• x + yz = (x + y)(x + z)

• (x + y)’ = x’ y’

• (xy)’ = x’ + y’

• (x’)’ = x

Theorems of Boolean Algebra

The following two theorems are used in Boolean algebra.

• Duality theorem

• DeMorgan’s theorem

Duality Theorem This theorem states that the dual of the Boolean

function is obtained by interchanging the logical AND operator with

logical OR operator and zeros with ones. For every Boolean function,

there will be a corresponding Dual function. Let us make the Boolean

equations relations that we discussed in the section of Boolean postulates

and basic laws into two groups. The following table shows these two

groups

DeMorgan’s Theorem

This theorem is useful in finding the complement of Boolean function.

It states that the complement of logical OR of at least two Boolean

variables is equal to the logical AND of each complemented variable.

DeMorgan’s theorem with 2 Boolean variables x and y can be represented

as

• (x+y)’ = x’.y’

The dual of the above Boolean function is

• (x.y)’ = x’ + y’

IFT 211 DIGITAL AND LOGIC DESIGN

52

Therefore, the complement of logical AND of two Boolean variables is

equal to the logical OR of each complemented variable. Similarly, we can

apply DeMorgan’s theorem for more than 2 Boolean variables also.

Example

Let us find the complement of the Boolean function, f = p’q + pq’.

The complement of Boolean function is f’ = p′q + pq′.

Step 1 − Use DeMorgan’s theorem, x+y’ = x’.y’.

⇒ f’ = p′q’.pq′′

Step 2 − Use DeMorgan’s theorem, x.y’ = x’ + y’

⇒ f’ = {p′’ + q’}.{p’ + q′’}

Step3 − Use the Boolean postulate, x′’=x.

⇒ f’ = {p + q’}.{p’ + q}

⇒ f’ = pp’ + pq + p’q’ + qq’

Step 4 − Use the Boolean postulate, xx’=0.

⇒ f = 0 + pq + p’q’ + 0

⇒ f = pq + p’q’

Therefore, the complement of Boolean function, p’q + pq’ is pq + p’q’.

IFT 211 DIGITAL AND LOGIC DESIGN

53

Unit 5: Canonical & Standard Forms

We will get four Boolean product terms by combining two variables x and

y with logical AND operation. These Boolean product terms are called

as min terms or standard product terms. The min terms are x’y’, x’y,

xy’ and xy.

Similarly, we will get four Boolean sum terms by combining two

variables x and y with logical OR operation. These Boolean sum terms

are called as Max terms or standard sum terms. The Max terms are x +

y, x + y’, x’ + y and x’ + y’. The following table shows the representation

of min terms and MAX terms for 2 variables.

If the binary variable is ‘0’, then it is represented as complement of

variable in min term and as the variable itself in Max term. Similarly, if

the binary variable is ‘1’, then it is represented as complement of variable

in Max term and as the variable itself in min term.

From the above table, we can easily notice that min terms and Max terms

are complement of each other. If there are ‘n’ Boolean variables, then

there will be 2n min terms and 2n Max terms.

Canonical SoP and PoS forms

A truth table consists of a set of inputs and outputs. If there are ‘n’ input

variables, then there will be 2n possible combinations with zeros and ones.

So the value of each output variable depends on the combination of input

variables. So, each output variable will have ‘1’ for some combination of

input variables and ‘0’ for some other combination of input variables.

Therefore, we can express each output variable in following two ways.

• Canonical SoP form

• Canonical PoS form

IFT 211 DIGITAL AND LOGIC DESIGN

54

Canonical SoP form

Canonical SoP form means Canonical Sum of Products form. In this form,

each product term contains all literals. So, these product terms are nothing

but the min terms. Hence, canonical SoP form is also called as sum of

min terms form.

First, identify the min terms for which, the output variable is one and then

do the logical OR of those min terms in order to get the Boolean

expression function corresponding to that output variable. This Boolean

function will be in the form of sum of min terms.

Follow the same procedure for other output variables also, if there is more

than one output variable.

Example

Consider the following truth table.

Here, the output f is ‘1’ for four combinations of inputs. The

corresponding min terms are p’qr, pq’r, pqr’, pqr. By doing logical OR of

these four min terms, we will get the Boolean function of output f.

Therefore, the Boolean function of output is, f = p’qr + pq’r + pqr’ + pqr.

This is the canonical SoP form of output, f. We can also represent this

function in following two notations.

F = m3 + m5 + m6 + m7

f = ∑ m (3, 5, 6, 7)

In one equation, we represented the function as sum of respective min

terms. In other equation, we used the symbol for summation of those min

terms.

IFT 211 DIGITAL AND LOGIC DESIGN

55

Canonical PoS form

Canonical PoS form means Canonical Product of Sums form. In this form,

each sum term contains all literals. So, these sum terms are nothing but

the Max terms. Hence, canonical PoS form is also called as product of

Max terms form.

First, identify the Max terms for which, the output variable is zero and

then do the logical AND of those Max terms in order to get the Boolean

expression function corresponding to that output variable. This Boolean

function will be in the form of product of Max terms.

Follow the same procedure for other output variables also, if there is more

than one output variable.

Example

Consider the same truth table of previous example. Here, the output f is

‘0’ for four combinations of inputs. The corresponding Max terms are p

+ q + r, p + q + r’, p + q’ + r, p’ + q + r. By doing logical AND of these

four Max terms, we will get the Boolean function of output f.

Therefore, the Boolean function of output is, f = p + q + r.p + q + r′.p + q′

+ r.p′ + q + r. This is the canonical PoS form of output, f. We can also

represent this function in following two notations.

F = M0.M1.M2.M4

f = ∏ M (0, 1, 2, 4)

In one equation, we represented the function as product of respective Max

terms. In other equation, we used the symbol for multiplication of those

Max terms.

The Boolean function, f = p + q +r.p + q + r′.p + q′ + r.p′ + q + r is the

dual of the Boolean function, f = p’qr + pq’r + pqr’ + pqr.

Therefore, both canonical SoP and canonical PoS forms are Dual to each

other. Functionally, these two forms are same. Based on the requirement,

we can use one of these two forms.

Standard SoP and PoS forms

We discussed two canonical forms of representing the Boolean outputs.

Similarly, there are two standard forms of representing the Boolean

outputs. These are the simplified version of canonical forms.

• Standard SoP form

• Standard PoS form

We will discuss about Logic gates in later chapters. The

main advantage of standard forms is that the number of inputs applied to

logic gates can be minimized. Sometimes, there will be reduction in the

total number of logic gates required.

Standard SoP form

Standard SoP form means Standard Sum of Products form. In this form,

each product term need not contain all literals. So, the product terms may

IFT 211 DIGITAL AND LOGIC DESIGN

56

or may not be the min terms. Therefore, the Standard SoP form is the

simplified form of canonical SoP form.

We will get Standard SoP form of output variable in two steps.

• Get the canonical SoP form of output variable

• Simplify the above Boolean function, which is in canonical SoP

form.

Follow the same procedure for other output variables also, if there is more

than one output variable. Sometimes, it may not possible to simplify the

canonical SoP form. In that case, both canonical and standard SoP forms

are same.

Example

Convert the following Boolean function into Standard SoP form.

Convert the following Boolean function into Standard SoP form.

F = p’qr + pq’r + pqr’ + pqr

The given Boolean function is in canonical SoP form. Now, we have to

simplify this Boolean function in order to get standard SoP form.

Step 1 – Use the Boolean postulate, x + x = x. That means, the Logical

OR operation with any Boolean variable ‘n’ times will be equal to the

same variable. So, we can write the last term pqr two more times.

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr

Step 2 – Use Distributive law for 1st and 4th terms, 2nd and 5th terms,

3rd and 6th terms.

⇒ f = qrp′ + p + prq′ + q + pqr′ + r

Step 3 – Use Boolean postulate, x + x’ = 1 for simplifying the terms

present in each parenthesis.

⇒ f = qr1 + pr1 + pq1

Step 4 – Use Boolean postulate, x.1 = x for simplifying above three

terms.

⇒ f = qr + pr + pq

⇒ f = pq + qr + pr

This is the simplified Boolean function. Therefore, the standard SoP

form corresponding to given canonical SoP form is f = pq + qr + pr

Standard PoS form

Standard PoS form means Standard Product of Sums form. In this form,

each sum term need not contain all literals. So, the sum terms may or may

not be the Max terms. Therefore, the Standard PoS form is the simplified

form of canonical PoS form.

We will get Standard PoS form of output variable in two steps.

• Get the canonical PoS form of output variable

• Simplify the above Boolean function, which is in canonical PoS

form.

Follow the same procedure for other output variables also, if there is more

than one output variable. Sometimes, it may not possible to simplify the

canonical PoS form. In that case, both canonical and standard PoS forms

are same.

IFT 211 DIGITAL AND LOGIC DESIGN

57

Tutor Marked Assignment

1. What is the logical expression for Y = A + A´B?

2. What is the octal equivalent of (F3B1)16?

3. Minimum number of 2 input NOR Gates required to realize f = C

+ AB is?

4. Realize W = AB + CD + EF + GH using 2 input NAND gates.

5. Convert (312)8 into decimal

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

1. What is Boolean algebra primarily used for?

A. Designing mechanical systems

B. Simplifying logical expressions

C. Calculating interest rates

D. Programming in Python

Answer: B

2. Which symbol represents the AND operation in Boolean algebra?

A. ·

B. ⊕

C. ¬

D. #

Answer: A

3. What is the identity element for the OR operation?

A. 0

B. 1

C. A

D. ¬A

Answer: B

4. What is the result of A + 0 in Boolean algebra?

A. 0

B. A

C. 1

D. ¬A

Answer: B

5. Which law states that A + A = A?

A. Identity Law

B. Idempotent Law

C. Complement Law

D. Distributive Law

Answer: B

6. What is the complement of 1 in Boolean algebra?

A. 1

B. 0

C. A

D. ¬A

Answer: B

IFT 211 DIGITAL AND LOGIC DESIGN

58

7. Which law is represented by A · (B + C) = A · B + A · C?

A. Associative Law

B. De Morgan’s Law

C. Distributive Law

D. Absorption Law

Answer: C

8. What does De Morgan’s first law state?

A. ¬(A + B) = ¬A · ¬B

B. ¬(A · B) = ¬A · ¬B

C. A + A = A

D. A · 1 = A

Answer: A

9. Which of the following is a valid simplification using Boolean

laws?

A. A + A = 1

B. A · 0 = 0

C. A · A = 0

D. A + 1 = 0

Answer: B

10. What is the result of A · 1 in Boolean algebra?

A. 0

B. A

C. 1

D. ¬A

Answer: B

Fill in the Blank Questions

1. Boolean algebra is used to __________ logical expressions. →

simplify

2. The symbol for the AND operation is __________. → ·

3. The law that states A + A = A is called the __________ law. →

idempotent

4. De Morgan’s first law states that ¬(A + B) = __________. → ¬A

· ¬B

5. The result of A · 0 is __________. → 0

IFT 211 DIGITAL AND LOGIC DESIGN

59

Module 2 Minimization Techniques

Unit 1 Karnaugh Map Method

Unit 2 Manipulation and Minimisation

Unit 3 Physical Properties of Gates

Unit 1 The Karnaugh Map Method

In previous lecture, we have simplified the Boolean functions using

Boolean postulates and theorems. It is a time consuming process and we

have to re-write the simplified expressions after each step.

To overcome this difficulty, Karnaugh introduced a method for

simplification of Boolean functions in an easy way. This method is known

as Karnaugh map method or K-map method. It is a graphical method,

which consists of 2n cells for ‘n’ variables. The adjacent cells are differed

only in single bit position.

K-Maps for 2 to 5 Variables

K-Map method is most suitable for minimizing Boolean functions of 2

variables to 5 variables. Now, let us discuss about the K-Maps for 2 to 5

variables one by one.

2 Variable K-Map

The number of cells in 2 variable K-map is four, since the number of

variables is two. The following figure shows 2 variable K-Map.

• There is only one possibility of grouping 4 adjacent min terms.

• The possible combinations of grouping 2 adjacent min terms are

{(m0, m1), (m2, m3), (m0, m2) and (m1, m3)}.

3 Variable K-Map

IFT 211 DIGITAL AND LOGIC DESIGN

60

The number of cells in 3 variable K-map is eight, since the number of

variables is three. The following figure shows 3 variable K-Map.

• There is only one possibility of grouping 8 adjacent min terms.

• The possible combinations of grouping 4 adjacent min terms are

{(m0, m1, m3, m2), (m4, m5, m7, m6), (m0, m1, m4, m5), (m1, m3, m5, m7),

(m3, m2, m7, m6) and (m2, m0, m6, m4)}.

• The possible combinations of grouping 2 adjacent min terms are

{(m0, m1), (m1, m3), (m3, m2), (m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6,

m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}.

• If x=0, then 3 variable K-map becomes 2 variable K-map.

4 Variable K-Map

The number of cells in 4 variable K-map is sixteen, since the number of

variables is four. The following figure shows 4 variable K-Map.

• There is only one possibility of grouping 16 adjacent min terms.

• Let R1, R2, R3 and R4 represents the min terms of first row, second

row, third row and fourth row respectively. Similarly, C1, C2, C3 and

C4 represents the min terms of first column, second column, third column

and fourth column respectively. The possible combinations of grouping 8

adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, R1), (C1, C2), (C2,

C3), (C3, C4), (C4, C1)}.

• If w=0, then 4 variable K-map becomes 3 variable K-map.

5 Variable K-Map

The number of cells in 5 variable K-map is thirty-two, since the number

of variables is 5. The following figure shows 5 variable K-Map.

IFT 211 DIGITAL AND LOGIC DESIGN

61

• There is only one possibility of grouping 32 adjacent min terms.

• There are two possibilities of grouping 16 adjacent min terms. i.e.,

grouping of min terms from m0 to m15 and m16 to m31.

• If v=0, then 5 variable K-map becomes 4 variable K-map.

In the above all K-maps, we used exclusively the min terms notation.

Similarly, you can use exclusively the Max terms notation.

Minimization of Boolean Functions using K-Maps

If we consider the combination of inputs for which the Boolean function

is ‘1’, then we will get the Boolean function, which is in standard sum

of products form after simplifying the K-map.

Similarly, if we consider the combination of inputs for which the Boolean

function is ‘0’, then we will get the Boolean function, which is

in standard product of sums form after simplifying the K-map.

Follow these rules for simplifying K-maps in order to get standard sum

of products form.

• Select the respective K-map based on the number of variables

present in the Boolean function.

• If the Boolean function is given as sum of min terms form, then

place the ones at respective min term cells in the K-map. If the

Boolean function is given as sum of products form, then place the

ones in all possible cells of K-map for which the given product

terms are valid.

• Check for the possibilities of grouping maximum number of

adjacent ones. It should be powers of two. Start from highest power

of two and upto least power of two. Highest power is equal to the

number of variables considered in K-map and least power is zero.

• Each grouping will give either a literal or one product term. It is

known as prime implicant. The prime implicant is said to

be essential prime implicant, if atleast single ‘1’ is not covered

with any other groupings but only that grouping covers.

• Note down all the prime implicants and essential prime implicants.

The simplified Boolean function contains all essential prime

implicants and only the required prime implicants.

IFT 211 DIGITAL AND LOGIC DESIGN

62

Note 1 − If outputs are not defined for some combination of inputs, then

those output values will be represented with don’t care symbol ‘x’. That

means, we can consider them as either ‘0’ or ‘1’.

Note 2 − If don’t care terms also present, then place don’t cares ‘x’ in the

respective cells of K-map. Consider only the don’t cares ‘x’ that are

helpful for grouping maximum number of adjacent ones. In those cases,

treat the don’t care value as ‘1’.

Here, 1s are placed in the following cells of K-map.

• The cells, which are common to the intersection of Row 4 and

columns 1 & 2 are corresponding to the product term, WX’Y’.

• The cells, which are common to the intersection of Rows 3 & 4

and columns 3 & 4 are corresponding to the product term, WY.

• The cells, which are common to the intersection of Rows 1 & 2

and column 4 are corresponding to the product term, W’YZ’.

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent

ones. There are three possibilities of grouping 4 adjacent ones. After these

three groupings, there is no single one left as ungrouped. So, we no need

to check for grouping of 2 adjacent ones. The 4 variable K-map with

these three groupings is shown in the following figure.

Here, we got three prime implicants WX’, WY & YZ’. All these prime

implicants are essential because of following reasons.

• Two ones (m8 & m9) of fourth row grouping are not covered by

any other groupings. Only fourth row grouping covers those two ones.

IFT 211 DIGITAL AND LOGIC DESIGN

63

• Single one (m15) of square shape grouping is not covered by any

other groupings. Only the square shape grouping covers that one.

• Two ones (m2 & m6) of fourth column grouping are not covered

by any other groupings. Only fourth column grouping covers those two

ones.

Therefore, the simplified Boolean function is

f = WX’ + WY + YZ’

Follow these rules for simplifying K-maps in order to get standard

product of sums form.

• Select the respective K-map based on the number of variables

present in the Boolean function.

• If the Boolean function is given as product of Max terms form,

then place the zeroes at respective Max term cells in the K-map. If

the Boolean function is given as product of sums form, then place

the zeroes in all possible cells of K-map for which the given sum

terms are valid.

• Check for the possibilities of grouping maximum number of

adjacent zeroes. It should be powers of two. Start from highest

power of two and upto least power of two. Highest power is equal

to the number of variables considered in K-map and least power is

zero.

• Each grouping will give either a literal or one sum term. It is known

as prime implicant. The prime implicant is said to be essential

prime implicant, if atleast single ‘0’ is not covered with any other

groupings but only that grouping covers.

• Note down all the prime implicants and essential prime implicants.

The simplified Boolean function contains all essential prime

implicants and only the required prime implicants.

Note − If don’t care terms also present, then place don’t cares ‘x’ in the

respective cells of K-map. Consider only the don’t cares ‘x’ that are

helpful for grouping maximum number of adjacent zeroes. In those cases,

treat the don’t care value as ‘0’.

Example

Let us simplify the following Boolean function, f (X,Y,Z) = ∏ M (0, 1,

2, 4) using K-map.

The given Boolean function is in product of Max terms form. It is having

3 variables X, Y & Z. So, we require 3 variable K-map. The given Max

IFT 211 DIGITAL AND LOGIC DESIGN

64

terms are M0, M1, M2 & M4. The 3 variable K-map with zeroes

corresponding to the given Max terms is shown in the following figure.

There are no possibilities of grouping either 8 adjacent zeroes or 4

adjacent zeroes. There are three possibilities of grouping 2 adjacent

zeroes. After these three groupings, there is no single zero left as

ungrouped. The 3 variable K-map with these three groupings is shown

in the following figure.

Here, we got three prime implicants X + Y, Y + Z & Z + X. All these

prime implicants are essential because one zero in each grouping is not

covered by any other groupings except with their individual groupings.

Therefore, the simplified Boolean function is

f = X + Y.Y + Z.Z + X

In this way, we can easily simplify the Boolean functions up to 5 variables

using K-map method. For more than 5 variables, it is difficult to simplify

the functions using K-Maps. Because, the number of cells in K-map

gets doubled by including a new variable.

Due to this checking and grouping of adjacent ones Minterms or adjacent

zeros Maxterms will be complicated.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary purpose of the Karnaugh Map (K-map)

method?

A. To design logic gates

B. To simplify Boolean functions

C. To convert decimal to binary

D. To build truth tables

Answer: B

Explanation: K-map is a graphical method used to simplify Boolean

expressions efficiently.

2. How many cells are in a 3-variable K-map?

A. 4

IFT 211 DIGITAL AND LOGIC DESIGN

65

B. 8

C. 16

D. 32

Answer: B

Explanation: A 3-variable K-map contains 2³ = 8 cells.

3. Which grouping size is NOT valid in a K-map simplification?

A. 1

B. 2

C. 3

D. 4

Answer: C

Explanation: Groupings must be in powers of two: 1, 2, 4, 8, etc.

4. What is a prime implicant in K-map terminology?

A. A variable in the function

B. A group of adjacent zeros

C. A product term from a grouping

D. A minimized truth table

Answer: C

Explanation: Each valid grouping in a K-map yields a product term

called a prime implicant.

5. What makes a prime implicant essential?

A. It contains only one variable

B. It covers at least one ‘1’ not covered by any other group

C. It is the largest group possible

D. It appears in every row

Answer: B

Explanation: Essential prime implicants uniquely cover at least one ‘1’

in the K-map.

6. What does a don’t care condition (‘x’) represent in a K-map?

A. A required ‘0’

B. A required ‘1’

C. An undefined output that can be treated as either ‘0’ or ‘1’

D. A redundant variable

Answer: C

Explanation: Don’t care conditions can be used to optimize groupings

by treating them as ‘0’ or ‘1’.

7. What is the result of simplifying a K-map using min terms?

A. Product of sums

B. Sum of products

C. Truth table

D. Binary code

Answer: B

Explanation: Grouping ‘1’s in a K-map leads to a simplified sum of

products expression.

8. How many cells are in a 5-variable K-map?

A. 16

IFT 211 DIGITAL AND LOGIC DESIGN

66

B. 32

C. 64

D. 8

Answer: B

Explanation: A 5-variable K-map contains 2⁵ = 32 cells.

9. Which of the following is a valid grouping in a 4-variable K-

map?

A. (m0, m1, m2)

B. (R1, R2)

C. (C1, C2, C3)

D. (m0, m4, m8, m12, m1)

Answer: B

Explanation: Rows R1 and R2 represent valid groupings of 8 adjacent

min terms.

10. What is the simplified Boolean function from the example

given in the unit?

A. WX + WY + YZ

B. WX’ + WY + YZ’

C. WX’Y’ + WY + W’YZ’

D. WX + WY + YZ’

Answer: B

Explanation: The final simplified function from the example is f = WX’

+ WY + YZ’.

Fill in the Blank Questions

1. A K-map with 4 variables contains __________ cells.

Answer: 16

2. Groupings in a K-map must be in powers of __________.

Answer: two

3. A __________ prime implicant covers at least one ‘1’ not covered

by any other grouping.

Answer: essential

4. Don’t care conditions are represented by the symbol __________

in a K-map.

Answer: x

5. The simplified Boolean function from the product of Max terms

example is __________.

Answer: X + Y · Y + Z · Z + X

IFT 211 DIGITAL AND LOGIC DESIGN

67

Unit 2 Manipulation and Minimization

IFT 211 DIGITAL AND LOGIC DESIGN

68

IFT 211 DIGITAL AND LOGIC DESIGN

69

IFT 211 DIGITAL AND LOGIC DESIGN

70

IFT 211 DIGITAL AND LOGIC DESIGN

71

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. Why is it important to simplify Boolean expressions?

A. To increase the number of variables

B. To make expressions harder to interpret

C. To improve efficiency and reduce errors

D. To convert them into decimal format

Answer: C

Explanation: Simplified expressions are easier to understand, less error-

prone, and more efficient in practical applications.

2. Which of the following is NOT a method for minimizing

Boolean expressions?

A. Karnaugh Maps

B. Tabular Method

C. Algebraic Manipulation

IFT 211 DIGITAL AND LOGIC DESIGN

72

D. Binary Expansion

Answer: D

Explanation: Binary expansion is not a recognized method for Boolean

minimization.

3. What does the Tabular Method primarily use to simplify

Boolean expressions?

A. Truth tables

B. Karnaugh maps

C. Prime implicant tables

D. ASCII codes

Answer: C

Explanation: The Tabular Method uses prime implicant tables to identify

minimal expressions.

4. In the Tabular Method, what does an 'X' in a table cell

typically indicate?

A. A variable is missing

B. A product term covers a minterm

C. A logic gate is required

D. A contradiction in logic

Answer: B

Explanation: An 'X' marks that a candidate product covers a specific

minterm.

5. What is the goal of identifying essential prime implicants in the

Tabular Method?

A. To increase the number of terms

B. To ensure all minterms are covered

C. To eliminate all variables

D. To convert expressions to hexadecimal

Answer: B

Explanation: Essential prime implicants are necessary to cover minterms

not covered by other groupings.

6. Which method is most suitable for simplifying Boolean

expressions with more than 5 variables?

A. Karnaugh Map

B. Tabular Method

C. Algebraic Manipulation

D. ASCII Encoding

Answer: B

Explanation: The Tabular Method is preferred for expressions with more

than 5 variables due to complexity.

7. What is the final simplified Boolean expression from the

example in the tabular method?

A. x + y

B. x * y

C. x - y

IFT 211 DIGITAL AND LOGIC DESIGN

73

D. x / y

Answer: B

Explanation: The final answer derived from the table is x * y.

8. What does a candidate product represent in the Tabular

Method?

A. A truth table row

B. A minimized literal

C. A combination of original terms

D. A binary digit

Answer: C

Explanation: Candidate products are formed by combining original

terms to simplify expressions.

9. What is the main challenge in parallelizing Boolean

expressions for minimization?

A. Lack of variables

B. Race conditions and deadlocks

C. Excessive memory usage

D. Slow input devices

Answer: B

Explanation: Concurrency introduces coding errors like race conditions

and deadlocks.

10. Which of the following is a benefit of using the Tabular Method

over Karnaugh Maps?

A. Easier for small variable sets

B. Better for visual grouping

C. Suitable for more than 5 variables

D. Requires no computation

Answer: C

Explanation: The Tabular Method handles large variable sets more

effectively than Karnaugh Maps.

Fill in the Blank Questions

1. Boolean expressions are simplified to improve __________ and

reduce errors.

Answer: efficiency

2. The Tabular Method uses __________ implicants to cover all

minterms.

Answer: prime

3. An 'X' in the table indicates that a __________ product covers a

minterm.

Answer: candidate

4. The final simplified expression from the example is __________.

Answer: x * y

5. The Tabular Method is preferred over Karnaugh Maps when there

are more than __________ variables.

Answer: five

IFT 211 DIGITAL AND LOGIC DESIGN

74

Unit 3 Physical properties of gates

Voltage Levels

Timing Diagram

IFT 211 DIGITAL AND LOGIC DESIGN

75

Gate Delay

Propagation Delay in a Circuit

Computing the Maximum Circuit Delay

IFT 211 DIGITAL AND LOGIC DESIGN

76

Rise-Time and Fall-Time

Fan-In

IFT 211 DIGITAL AND LOGIC DESIGN

77

Fan-Out

IFT 211 DIGITAL AND LOGIC DESIGN

78

Increasing the Fan-Out with a Buffer Gate

Tutor Marked Assignment

1. Find Product of Sum (POS) form of f (a, b, c, d) = TTM (1, 4, 6, 9)

2. Simplify f (a , b , c) = ∑ m (0, 2, 5, 7)

3. Minimize the Boolean function F(A, B, C, D) = Σ m (0, 1, 2, 5, 7,

8, 9, 10, 13, 15)

4. Minimize the Boolean function F(A, B, C, D) = Σ m (1, 3, 4, 6, 8,

9, 11, 13, 15) + Σ d (0, 2, 14)

5. Minimize the Boolean function F(A, B, C, D) = Σ m (0, 2, 8, 10,

14) + Σ d (5, 15)

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What does gate delay refer to in digital circuits?

A. The time a signal takes to travel through a wire

B. The time between input change and output response in a gate

C. The time required to power on a circuit

D. The time to store data in memory

Answer: B

Explanation: Gate delay is the time it takes for a gate’s output to respond

after its input changes.

2. What is propagation delay in a digital circuit?

A. The delay caused by the power supply

B. The delay between input and output across the entire circuit

C. The delay in signal transmission through a cable

D. The delay in memory access

Answer: B

Explanation: Propagation delay is the total delay from input to output

across the critical path of a circuit.

3. How is propagation delay calculated?

A. By summing all gate delays

IFT 211 DIGITAL AND LOGIC DESIGN

79

B. By measuring the longest delay at any output

C. By counting the number of gates

D. By checking the voltage level

Answer: B

Explanation: Propagation delay is the maximum delay at any output,

typically along the critical path.

4. What is the delay of a 2-input AND gate in the given example?

A. 2 ns

B. 3 ns

C. 4 ns

D. 5 ns

Answer: B

Explanation: The delay of a 2-input AND gate is specified as 3 ns.

5. Which gate has a higher delay due to increased fan-in?

A. 2-input AND gate

B. 3-input AND gate

C. NOT gate

D. XOR gate

Answer: B

Explanation: Gates with higher fan-in, like a 3-input AND gate, have

more delay than those with fewer inputs.

6. What does fan-in refer to in digital logic design?

A. Number of outputs a gate can drive

B. Number of inputs to a gate

C. Number of gates in a circuit

D. Number of bits in a signal

Answer: B

Explanation: Fan-in is the number of inputs connected to a logic gate.

7. What is fan-out in digital circuits?

A. Number of gates in a circuit

B. Number of outputs a gate can produce

C. Number of gate inputs a gate’s output can feed

D. Number of bits in a signal

Answer: C

Explanation: Fan-out is the number of gate inputs that a single gate

output can drive.

8. Why is there a limit to fan-out in digital circuits?

A. Due to voltage drop

B. Due to current supply limitations

C. Due to signal frequency

D. Due to gate size

Answer: B

Explanation: A gate can only supply a limited amount of current,

limiting how many gates it can drive.

9. What is the purpose of a buffer gate?

A. To reduce voltage

IFT 211 DIGITAL AND LOGIC DESIGN

80

B. To increase fan-out and drive capability

C. To store data

D. To convert analog to digital

Answer: B

Explanation: Buffer gates amplify signals and increase the number of

gates that can be driven.

10. What effect does a buffer gate have on propagation delay?

A. It eliminates delay

B. It reduces delay

C. It increases delay

D. It has no effect

Answer: C

Explanation: Buffer gates increase propagation delay due to added

circuitry.

Fill in the Blank Questions

1. Gate delay is the time between a change in __________ and the

corresponding change in output.

Answer: input

2. Propagation delay is calculated along the __________ path of a

circuit.

Answer: critical

3. Fan-in refers to the number of __________ connected to a logic

gate.

Answer: inputs

4. Fan-out refers to the number of gate __________ a gate’s output

can feed.

Answer: inputs

5. A __________ gate is used to amplify signals and increase drive

capability.

Answer: buffer

IFT 211 DIGITAL AND LOGIC DESIGN

81

Module 3 Combinational and Sequential Circuits

Unit 1 Combinational Circuits and Design Procedure

Unit 2 Binary Subtractor

Unit 3 Multiplexers

Unit 4 De-multiplexers

Unit 5 Decoders

Unit 6 Encoders

Unit 7 Latches

Unit 8 Flip-Flops

Unit 1 Combinational Circuits and Design Procedure

Combinational circuits consist of Logic gates. These circuits operate

with binary values. The outputs of combinational circuit depends on the

combination of present inputs. The following figure shows the block

diagram of combinational circuit.

This combinational circuit has ‘n’ input variables and ‘m’ outputs. Each

combination of input variables will affect the outputs.

Design procedure of Combinational circuits

• Find the required number of input variables and outputs from given

specifications.

• Formulate the Truth table. If there are ‘n’ input variables, then

there will be 2n possible combinations. For each combination of

input, find the output values.

• Find the Boolean expressions for each output. If necessary,

simplify those expressions.

• Implement the above Boolean expressions corresponding to each

output by using Logic gates.

Binary Adder

The most basic arithmetic operation is addition. The circuit, which

performs the addition of two binary numbers is known as Binary adder.

First, let us implement an adder, which performs the addition of two bits.

Half Adder

IFT 211 DIGITAL AND LOGIC DESIGN

82

Half adder is a combinational circuit, which performs the addition of two

binary numbers A and B are of single bit. It produces two outputs sum, S

& carry, C.

The Truth table of Half adder is shown below.

When we do the addition of two bits, the resultant sum can have the values

ranging from 0 to 2 in decimal. We can represent the decimal digits 0 and

1 with single bit in binary. But, we can’t represent decimal digit 2 with

single bit in binary. So, we require two bits for representing it in binary.

When we do the addition of two bits, the resultant sum can have the values

ranging from 0 to 2 in decimal. We can represent the decimal digits 0 and

1 with single bit in binary. But, we can’t represent decimal digit 2 with

single bit in binary. So, we require two bits for representing it in binary.

Let, sum, S is the Least significant bit and carry, C is the Most significant

bit of the resultant sum. For first three combinations of inputs, carry, C is

zero and the value of S will be either zero or one based on the number of

ones present at the inputs. But, for last combination of inputs, carry, C is

one and sum, S is zero, since the resultant sum is two.

From Truth table, we can directly write the Boolean functions for each

output as

S = A⊕B

C = AB

We can implement the above functions with 2-input Ex-OR gate & 2-

input AND gate. The circuit diagram of Half adder is shown in the

following figure.

In the above circuit, a two input Ex-OR gate & two input AND gate

produces sum, S & carry, C respectively. Therefore, Half-adder performs

the addition of two bits.

Full Adder

Full adder is a combinational circuit, which performs the addition of

three bits A, B and Cin. Where, A & B are the two parallel significant bits

and Cin is the carry bit, which is generated from previous stage. This Full

Inputs Outputs

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

IFT 211 DIGITAL AND LOGIC DESIGN

83

adder also produces two outputs sum, S & carry, Cout, which are similar

to Half adder.

The Truth table of Full adder is shown below.

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

When we do the addition of three bits, the resultant sum can have the

values ranging from 0 to 3 in decimal. We can represent the decimal digits

0 and 1 with single bit in binary. But, we can’t represent the decimal digits

2 and 3 with single bit in binary. So, we require two bits for representing

those two decimal digits in binary.

Let, sum, S is the Least significant bit and carry, Cout is the Most

significant bit of resultant sum. It is easy to fill the values of outputs for

all combinations of inputs in the truth table. Just count the number of

ones present at the inputs and write the equivalent binary number at

outputs. If Cin is equal to zero, then Full adder truth table is same as that

of Half adder truth table.

We will get the following Boolean functions for each output after

simplification.

S = A ⊕ B ⊕ Cin

cout = AB + (A ⊕ B)cin

The sum, S is equal to one, when odd number of ones present at the inputs.

We know that Ex-OR gate produces an output, which is an odd function.

So, we can use either two 2input Ex-OR gates or one 3-input Ex-OR gate

in order to produce sum, S. We can implement carry, Cout using two 2-

input AND gates & one OR gate. The circuit diagram of Full adder is

shown in the following figure.

IFT 211 DIGITAL AND LOGIC DESIGN

84

This adder is called as Full adder because for implementing one Full

adder, we require two Half adders and one OR gate. If Cin is zero, then

Full adder becomes Half adder. We can verify it easily from the above

circuit diagram or from the Boolean functions of outputs of Full adder.

4-bit Binary Adder

The 4-bit binary adder performs the addition of two 4-bit numbers. Let

the 4-bit binary numbers, A = A3A2A1A0 and B = B3B2B1B0. We can

implement 4-bit binary adder in one of the two following ways.

• Use one Half adder for doing the addition of two Least significant

bits and three Full adders for doing the addition of three higher significant

bits.

• Use four Full adders for uniformity. Since, initial carry Cin is zero,

the Full adder which is used for adding the least significant bits becomes

Half adder.

For the time being, we considered second approach. The block

diagram of 4-bit binary adder is shown in the following figure.

Here, the 4 Full adders are cascaded. Each Full adder is getting the

respective bits of two parallel inputs A & B. The carry output of one Full

adder will be the carry input of subsequent higher order Full adder. This

IFT 211 DIGITAL AND LOGIC DESIGN

85

4-bit binary adder produces the resultant sum having at most 5 bits. So,

carry out of last stage Full adder will be the MSB.

In this way, we can implement any higher order binary adder just by

cascading the required number of Full adders. This binary adder is also

called as ripple carry binary adder because the carry

propagates ripples from one stage to the next stage.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

1. What defines a combinational logic circuit?

A. It stores data

B. Its output depends only on current inputs

C. It has memory elements

D. It operates sequentially

Answer: B

2. Which of the following is a basic combinational circuit?

A. Flip-flop

B. Counter

C. Multiplexer

D. Register

Answer: C

3. What is the function of a decoder?

A. To store binary data

B. To convert binary input into a unique output line

C. To perform arithmetic operations

D. To generate clock signals

Answer: B

4. Which combinational circuit selects one input from many?

A. Decoder

B. Demultiplexer

C. Comparator

D. Multiplexer

Answer: E

5. What does a half adder do?

A. Multiplies two bits

B. Adds two bits and gives sum and carry

C. Subtracts two bits

D. Stores binary numbers

Answer: B

6. Which logic gates are used in a half adder?

A. AND and OR

B. XOR and AND

C. NAND and NOR

D. NOT and XOR

Answer: B

7. What is the difference between a half adder and a full adder?

IFT 211 DIGITAL AND LOGIC DESIGN

86

A. Full adder adds three bits including carry-in

B. Half adder is faster

C. Full adder uses fewer gates

D. Half adder stores data

Answer: A

8. What is the output of a 2-to-4 decoder?

A. 2 lines

B. 4 lines

C. 8 lines

D. 1 line

Answer: B

9. Which circuit distributes one input to multiple outputs?

A. Multiplexer

B. Demultiplexer

C. Decoder

D. Adder

Answer: B

10. What is the purpose of a comparator?

A. To compare two binary numbers

B. To store data

C. To decode signals

D. To generate clock pulses

Answer: A

Fill in the Blank Questions

1. A __________ logic circuit’s output depends only on current

inputs. → combinational

2. A __________ adds two bits and produces sum and carry. → half

adder

3. A __________ selects one input from many inputs. → multiplexer

4. A __________ converts binary input into a unique output line. →

decoder

IFT 211 DIGITAL AND LOGIC DESIGN

87

Unit 2 Binary Subtractor

The circuit, which performs the subtraction of two binary numbers is

known as Binary subtractor. We can implement Binary subtractor in

following two methods.

• Cascade Full subtractors

• 2’s complement method

In first method, we will get an n-bit binary subtractor by cascading ‘n’

Full subtractors. So, first you can implement Half subtractor and Full

subtractor, similar to Half adder & Full adder. Then, you can implement

an n-bit binary subtractor, by cascading ‘n’ Full subtractors. So, we will

be having two separate circuits for binary addition and subtraction of two

binary numbers.

In second method, we can use same binary adder for subtracting two

binary numbers just by doing some modifications in the second input. So,

internally binary addition operation takes place but, the output is resultant

subtraction.

We know that the subtraction of two binary numbers A & B can be written

as,

A – B = A + (2′s compliment of B)

⇒ A – B = A + (1′s compliment of B) + 1

4-bit Binary Subtractor

The 4-bit binary subtractor produces the subtraction of two 4-bit

numbers. Let the 4bit binary numbers, A = A3A2A1A0 and B = B3B2B1B0.

Internally, the operation of 4-bit Binary subtractor is similar to that of 4-

bit Binary adder. If the normal bits of binary number A, complemented

bits of binary number B and initial carry borrow, Cin as one are applied to

4-bit Binary adder, then it becomes 4-bit Binary subtractor. The block

diagram of 4-bit binary subtractor is shown in the following figure.

IFT 211 DIGITAL AND LOGIC DESIGN

88

This 4-bit binary subtractor produces an output, which is having at most

5 bits. If Binary number A is greater than Binary number B, then MSB of

the output is zero and the remaining bits hold the magnitude of A-B. If

Binary number A is less than Binary number B, then MSB of the output

is one. So, take the 2’s complement of output in order to get the magnitude

of A-B.

In this way, we can implement any higher order binary subtractor just by

cascading the required number of Full adders with necessary

modifications.

Binary Adder / Subtractor

The circuit, which can be used to perform either addition or subtraction

of two binary numbers at any time is known as Binary Adder /

subtractor. Both, Binary adder and Binary subtractor contain a set of Full

adders, which are cascaded. The input bits of binary number A are directly

applied in both Binary adder and Binary subtractor.

There are two differences in the inputs of Full adders that are present in

Binary adder and Binary subtractor.

• The input bits of binary number B are directly applied to Full

adders in Binary adder, whereas the complemented bits of binary number

B are applied to Full adders in Binary subtractor.

• The initial carry, C0 = 0 is applied in 4-bit Binary adder, whereas

the initial carry borrow, C0 = 1 is applied in 4-bit Binary subtractor.

We know that a 2-input Ex-OR gate produces an output, which is same

as that of first input when other input is zero. Similarly, it produces an

output, which is complement of first input when other input is one.

Therefore, we can apply the input bits of binary number B, to 2-input Ex-

OR gates. The other input to all these Ex-OR gates is C0. So, based on the

value of C0, the Ex-OR gates produce either the normal or complemented

bits of binary number B.

IFT 211 DIGITAL AND LOGIC DESIGN

89

4-bit Binary Adder / Subtractor

The 4-bit binary adder / subtractor produces either the addition or the

subtraction of two 4-bit numbers based on the value of initial carry or

borrow, 𝐶0. Let the 4-bit binary numbers, A = A3A2A1A0 and B =

B3B2B1B0. The operation of 4-bit Binary adder / subtractor is similar to

that of 4-bit Binary adder and 4-bit Binary subtractor.

Apply the normal bits of binary numbers A and B & initial carry or

borrow, C0 from externally to a 4-bit binary adder. The block diagram of

4-bit binary adder / subtractor is shown in the following figure.

If initial carry, 𝐶0 is zero, then each full adder gets the normal bits of

binary numbers A & B. So, the 4-bit binary adder / subtractor produces

an output, which is the addition of two binary numbers A & B.

If initial borrow, 𝐶0 is one, then each full adder gets the normal bits of

binary number A & complemented bits of binary number B. So, the 4-bit

binary adder / subtractor produces an output, which is the subtraction of

two binary numbers A & B.

Therefore, with the help of additional Ex-OR gates, the same circuit can

be used for both addition and subtraction of two binary numbers.

SELF –ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the main function of a binary subtractor?

A. To multiply binary numbers

B. To divide binary numbers

C. To subtract binary numbers

D. To convert binary to decimal

Answer: C

Explanation: A binary subtractor performs subtraction between two

binary numbers.

2. Which method uses a binary adder to perform subtraction?

A. Cascade full subtractors

IFT 211 DIGITAL AND LOGIC DESIGN

90

B. 2’s complement method

C. Decimal subtraction

D. Half subtractor method

Answer: B

Explanation: The 2’s complement method modifies the second input and

uses a binary adder to perform subtraction.

3. What is the result of subtracting B from A using 2’s

complement?

A. A – B = A + B

B. A – B = A + (1’s complement of B)

C. A – B = A + (2’s complement of B)

D. A – B = A – (2’s complement of B)

Answer: C

Explanation: Subtraction is performed by adding the 2’s complement of

B to A.

4. How many bits can the output of a 4-bit binary subtractor have

at most?

A. 4

B. 5

C. 6

D. 8

Answer: B

Explanation: The output may include an extra bit for the sign, making it

up to 5 bits.

5. What does the MSB of the output indicate in a binary

subtractor?

A. The parity of the result

B. The overflow condition

C. Whether A is greater than B

D. The carry bit

Answer: C

Explanation: MSB indicates whether A is greater than B (0) or less than

B (1).

6. What is the role of Ex-OR gates in a binary adder/subtractor

circuit?

A. To perform multiplication

B. To generate carry bits

C. To complement bits based on control input

D. To store intermediate results

Answer: C

Explanation: Ex-OR gates produce either normal or complemented bits

of B based on the control input C₀.

7. What value of C₀ is used for subtraction in a binary

adder/subtractor?

A. 0

B. 1

IFT 211 DIGITAL AND LOGIC DESIGN

91

C. Depends on A

D. Depends on B

Answer: B

Explanation: C₀ = 1 is used to initiate subtraction using the 2’s

complement method.

8. Which component is used in both binary adder and subtractor

circuits?

A. Decoder

B. Full adder

C. Multiplexer

D. Comparator

Answer: B

Explanation: Full adders are used in both addition and subtraction

operations.

9. What happens when A < B in a binary subtractor?

A. The result is negative

B. The result is zero

C. The result is undefined

D. The result is positive

Answer: A

Explanation: When A is less than B, the MSB is 1, indicating a negative

result.

10. What is the advantage of using a binary adder/subtractor

circuit?

A. It reduces power consumption

B. It simplifies hardware design

C. It performs multiplication

D. It increases memory size

Answer: B

Explanation: A single circuit can perform both addition and subtraction,

simplifying design.

Fill in the Blank Questions

1. A binary subtractor can be implemented using either cascade full

subtractors or the __________ method.

Answer: 2’s complement

2. The 2’s complement of a binary number is obtained by taking the

1’s complement and adding __________.

Answer: 1

3. In a 4-bit binary subtractor, the MSB of the output indicates

whether A is __________ than B.

Answer: greater

4. The control input C₀ is set to __________ to perform subtraction

in a binary adder/subtractor.

Answer: 1

IFT 211 DIGITAL AND LOGIC DESIGN

92

5. Ex-OR gates are used to produce either normal or __________ bits

of B based on the value of C₀.

Answer: complemented

IFT 211 DIGITAL AND LOGIC DESIGN

93

Unit 3: Multiplexers

Multiplexer is a combinational circuit that has maximum of 2n data

inputs, ‘n’ selection lines and single output line. One of these data inputs

will be connected to the output based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations

of zeros and ones. So, each combination will select only one data input.

Multiplexer is also called as Mux.

4x1 Multiplexer

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 &

s0 and one output Y. The block diagram of 4x1 Multiplexer is shown in

the following figure. One of these 4 inputs will be connected to the output

based on the combination of inputs present at these two selection

lines. Truth table of 4x1 Multiplexer is shown below.

Selection Lines Output

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

From Truth table, we can directly write the Boolean function for output,

Y as

Y = S1′ S0′ I0 + S1′ S0 I1 + S1S0′ I2 + S1 S0 I3

IFT 211 DIGITAL AND LOGIC DESIGN

94

We can implement this Boolean function using Inverters, AND gates &

OR gate. The circuit diagram of 4x1 multiplexer is shown in the

following figure.

We can easily understand the operation of the above circuit. Similarly,

you can implement 8x1 Multiplexer and 16x1 multiplexer by following

the same procedure.

Implementation of Higher-order Multiplexers.

Now, let us implement the following two higher-order Multiplexers using

lower-order Multiplexers.

• 8x1 Multiplexer

• 16x1 Multiplexer

8x1 Multiplexer

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers

and 2x1 Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2

selection lines and one output. Whereas, 8x1 Multiplexer has 8 data

inputs, 3 selection lines and one output.

So, we require two 4x1 Multiplexers in first stage in order to get the 8

data inputs. Since, each 4x1 Multiplexer produces one output, we require

a 2x1 Multiplexer in second stage by considering the outputs of first

stage as inputs and to produce the final output.

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines

s2, s1 & s0 and one output Y. The Truth table of 8x1 Multiplexer is

shown below.

IFT 211 DIGITAL AND LOGIC DESIGN

95

Selection Inputs Output

S2 S1 S0 Y

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

We can implement 8x1 Multiplexer using lower order Multiplexers easily

by considering the above Truth table. The block diagram of 8x1

Multiplexer is shown in the following figure.

The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers.

The data inputs of upper 4x1 Multiplexer are I7 to I4 and the data inputs

of lower 4x1 Multiplexer are I3 to I0. Therefore, each 4x1 Multiplexer

produces an output based on the values of selection lines, s1 & s0.

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1

Multiplexer that is present in second stage. The other selection line, s2 is

applied to 2x1 Multiplexer.

• If s2 is zero, then the output of 2x1 Multiplexer will be one of the

4 inputs I3 to I0 based on the values of selection lines s1 & s0.

• If s2 is one, then the output of 2x1 Multiplexer will be one of the 4

inputs I7 to I4 based on the values of selection lines s1 & s0.

IFT 211 DIGITAL AND LOGIC DESIGN

96

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1

Multiplexer performs as one 8x1 Multiplexer.

16x1 Multiplexer

In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers

and 2x1 Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3

selection lines and one output. Whereas, 16x1 Multiplexer has 16 data

inputs, 4 selection lines and one output.

So, we require two 8x1 Multiplexers in first stage in order to get the 16

data inputs. Since, each 8x1 Multiplexer produces one output, we require

a 2x1 Multiplexer in second stage by considering the outputs of first stage

as inputs and to produce the final output.

Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection

lines s3 to s0 and one output Y. The Truth table of 16x1 Multiplexer is

shown below.

Selection Inputs Output

S3 S2 S1 S0 Y

0 0 0 0 I0

0 0 0 1 I1

0 0 1 0 I2

0 0 1 1 I3

0 1 0 0 I4

0 1 0 1 I5

0 1 1 0 I6

0 1 1 1 I7

1 0 0 0 I8

1 0 0 1 I9

1 0 1 0 I10

1 0 1 1 I11

1 1 0 0 I12

1 1 0 1 I13

1 1 1 0 I14

1 1 1 1 I15

IFT 211 DIGITAL AND LOGIC DESIGN

97

We can implement 16x1 Multiplexer using lower order Multiplexers

easily by considering the above Truth table.

The block diagram of 16x1 Multiplexer is shown in the following figure.

The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers.

The data inputs of upper 8x1 Multiplexer are I15 to I8 and the data inputs

of lower 8x1 Multiplexer are I7 to I0. Therefore, each 8x1 Multiplexer

produces an output based on the values of selection lines, s2, s1 & s0.

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1

Multiplexer that is present in second stage. The other selection line, s3 is

applied to 2x1 Multiplexer.

• If s3 is zero, then the output of 2x1 Multiplexer will be one of the

8 inputs Is7 to I0 based on the values of selection lines s2, s1 & s0.

• If s3 is one, then the output of 2x1 Multiplexer will be one of the 8

inputs I15 to I8 based on the values of selection lines s2, s1 & s0.

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1

Multiplexer performs as one 16x1 Multiplexer.

IFT 211 DIGITAL AND LOGIC DESIGN

98

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of a multiplexer?

A. To perform arithmetic operations

B. To select one of many inputs and forward it to the output

C. To store binary data

D. To convert analog signals to digital

Answer: B

Explanation: A multiplexer selects one of several input signals and

forwards it to a single output line based on selection inputs.

2. How many data inputs does a 4x1 multiplexer have?

A. 2

B. 4

C. 8

D. 1

Answer: B

Explanation: A 4x1 multiplexer has 4 data inputs and 2 selection lines.

3. What is the Boolean expression for the output of a 4x1

multiplexer?

A. Y = S1S0I0 + S1S0I1 + S1S0I2 + S1S0I3

B. Y = S1′S0′I0 + S1′S0I1 + S1S0′I2 + S1S0I3

C. Y = I0 + I1 + I2 + I3

D. Y = S1 + S0 + I0

Answer: B

Explanation: The output is determined by the combination of selection

lines and corresponding input.

4. How many selection lines are needed for an 8x1 multiplexer?

A. 2

B. 3

C. 4

D. 1

Answer: B

Explanation: An 8x1 multiplexer requires 3 selection lines to choose

among 8 inputs.

5. What is the role of the 2x1 multiplexer in an 8x1 multiplexer

implementation using 4x1 multiplexers?

A. To generate selection lines

B. To combine outputs from the 4x1 multiplexers

C. To store data

D. To perform logical operations

Answer: B

Explanation: The 2x1 multiplexer selects between the outputs of the two

4x1 multiplexers.

6. How many data inputs does a 16x1 multiplexer have?

A. 8

IFT 211 DIGITAL AND LOGIC DESIGN

99

B. 4

C. 16

D. 32

Answer: C

Explanation: A 16x1 multiplexer has 16 data inputs and 4 selection lines.

7. Which selection line determines whether the upper or lower

8x1 multiplexer is selected in a 16x1 multiplexer?

A. S0

B. S1

C. S2

D. S3

Answer: D

Explanation: S3 is used by the 2x1 multiplexer to select between the

outputs of the two 8x1 multiplexers.

8. What is the total number of possible input combinations for a

4x1 multiplexer?

A. 2

B. 4

C. 8

D. 16

Answer: B

Explanation: With 2 selection lines, there are 2² = 4 possible

combinations.

9. What is the advantage of using lower-order multiplexers to

build higher-order ones?

A. Reduces power consumption

B. Simplifies circuit design

C. Increases memory

D. Improves signal strength

Answer: B

Explanation: Using lower-order multiplexers allows modular and

scalable design of complex circuits.

10. What does the output of a multiplexer depend on?

A. The number of gates

B. The selection line values

C. The clock signal

D. The power supply

Answer: B

Explanation: The output is determined by the values of the selection

lines.

Fill in the Blank Questions

1. A multiplexer with n selection lines can handle up to __________

data inputs.

Answer: 2^n

2. A 4x1 multiplexer uses __________ selection lines.

Answer: 2

IFT 211 DIGITAL AND LOGIC DESIGN

100

3. The Boolean expression for a 4x1 multiplexer output is derived

from its __________ table.

Answer: truth

4. In a 16x1 multiplexer, the selection line __________ chooses

between the two 8x1 multiplexers.

Answer: S3

5. The output of a multiplexer is determined by the values of the

__________ lines.

Answer: selection

IFT 211 DIGITAL AND LOGIC DESIGN

101

Unit 4 De-Multiplexers

De-Multiplexer is a combinational circuit that performs the reverse

operation of Multiplexer. It has single input, ‘n’ selection lines and

maximum of 2n outputs. The input will be connected to one of these

outputs based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations

of zeros and ones. So, each combination can select only one output. De-

Multiplexer is also called as De-Mux.

1x4 De-Multiplexer

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four

outputs Y3, Y2, Y1 &Y0. The block diagram of 1x4 De-Multiplexer is

shown in the following figure.

The single input ‘I’ will be connected to one of the four outputs, Y3 to

Y0 based on the values of selection lines s1 & s0. The Truth table of 1x4

De-Multiplexer is shown below.

Selection Inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

From the above Truth table, we can directly write the Boolean

functions for each output as

Y3 = s1 s0I

Y2 = s1 s0′I

Y1 = s1′ s0I

Y0 = s1′ s0′I

IFT 211 DIGITAL AND LOGIC DESIGN

102

We can implement these Boolean functions using Inverters & 3-input

AND gates. The circuit diagram of 1x4 De-Multiplexer is shown in the

following figure.

We can easily understand the operation of the above circuit. Similarly,

you can implement 1x8 De-Multiplexer and 1x16 De-Multiplexer by

following the same procedure.

Implementation of Higher-order De-Multiplexers

Now, let us implement the following two higher-order De-Multiplexers

using lower-order De-Multiplexers.

• 1x8 De-Multiplexer

• 1x16 De-Multiplexer

1x8 De-Multiplexer

In this section, let us implement 1x8 De-Multiplexer using 1x4 De-

Multiplexers and 1x2 De-Multiplexer. We know that 1x4 De-Multiplexer

has single input, two selection lines and four outputs. Whereas, 1x8 De-

Multiplexer has single input, three selection lines and eight outputs.

IFT 211 DIGITAL AND LOGIC DESIGN

103

Selection Inputs Outputs

S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

So, we require two 1x4 De-Multiplexers in second stage in order to get

the final eight outputs. Since, the number of inputs in second stage is two,

we require 1x2 DeMultiplexer in first stage so that the outputs of first

stage will be the inputs of second stage. Input of this 1x2 De-Multiplexer

will be the overall input of 1x8 De-Multiplexe.

Let the 1x8 De-Multiplexer has one input I, three selection lines s2, s1 &

s0 and outputs Y7 to Y0. The Truth table of 1x8 De-Multiplexer is shown

below.

We can implement 1x8 De-Multiplexer using lower order Multiplexers

easily by considering the above Truth table. The block diagram of 1x8

De-Multiplexer is shown in the following figure.

The common selection lines, s1 & s0 are applied to both 1x4 De-

Multiplexers. The outputs of upper 1x4 De-Multiplexer are Y7 to Y4 and

the outputs of lower 1x4 De-Multiplexer are Y3 to Y0.

IFT 211 DIGITAL AND LOGIC DESIGN

104

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero,

then one of the four outputs of lower 1x4 De-Multiplexer will be equal to

input, I based on the values of selection lines s1 & s0. Similarly, if s2 is

one, then one of the four outputs of upper 1x4 DeMultiplexer will be equal

to input, I based on the values of selection lines s1 & s0.

1x16 De-Multiplexer

In this section, let us implement 1x16 De-Multiplexer using 1x8 De-

Multiplexers and 1x2 De-Multiplexer. We know that 1x8 De-Multiplexer

has single input, three selection lines and eight outputs. Whereas, 1x16

De-Multiplexer has single input, four selection lines and sixteen outputs.

So, we require two 1x8 De-Multiplexers in second stage in order to get

the final sixteen outputs. Since, the number of inputs in second stage is

two, we require 1x2 DeMultiplexer in first stage so that the outputs of

first stage will be the inputs of second stage. Input of this 1x2 De-

Multiplexer will be the overall input of 1x16 De-Multiplexer.

Let the 1x16 De-Multiplexer has one input I, four selection lines s3, s2,

s1 & s0 and outputs Y15 to Y0. The block diagram of 1x16 De-

Multiplexer using lower order Multiplexers is shown in the following

figure.

The common selection lines s2, s1 & s0 are applied to both 1x8 De-

Multiplexers. The outputs of upper 1x8 De-Multiplexer are Y15 to Y8 and

the outputs of lower 1x8 DeMultiplexer are Y7 to Y0.

The other selection line, s3 is applied to 1x2 De-Multiplexer. If s3 is zero,

then one of the eight outputs of lower 1x8 De-Multiplexer will be equal

to input, I based on the values of selection lines s2, s1 & s0. Similarly, if

s3 is one, then one of the 8 outputs of upper 1x8 De-Multiplexer will be

equal to input, I based on the values of selection lines s2, s1 & s0.

IFT 211 DIGITAL AND LOGIC DESIGN

105

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of a De-Multiplexer?

A. To combine multiple inputs into one output

B. To convert analog signals to digital

C. To distribute a single input to one of many outputs

D. To store binary data

Answer: C

E.

Explanation: A De-Multiplexer routes a single input to one of several

outputs based on selection lines.

2. How many outputs does a 1x4 De-Multiplexer have?

A. 2

B. 4

C. 8

D. 1

Answer: B

Explanation: A 1x4 De-Multiplexer has 4 outputs and 2 selection lines.

3. What is the Boolean expression for output Y0 in a 1x4 De-

Multiplexer?

A. s1 \cdot s0 \cdot I

B. s1' \cdot s0' \cdot I

C. s1 \cdot s0' \cdot I

D. s1' \cdot s0 \cdot I

Answer: B

Explanation: Y0 is active when both selection lines are 0, so the

expression is s1' \cdot s0' \cdot I.

4. How many selection lines are needed for a 1x8 De-Multiplexer?

A. 2

B. 3

C. 4

D. 1

Answer: B

Explanation: A 1x8 De-Multiplexer requires 3 selection lines to choose

among 8 outputs.

5. What is the role of the 1x2 De-Multiplexer in the 1x8 De-

Multiplexer implementation?

A. To generate selection lines

B. To split the input into two paths for the 1x4 De-Multiplexers

C. To store data

D. To perform logical operations

E.

Answer: B

IFT 211 DIGITAL AND LOGIC DESIGN

106

Explanation: The 1x2 De-Multiplexer directs the input to one of the two

1x4 De-Multiplexers.

6. How many outputs does a 1x16 De-Multiplexer have?

A. 8

B. 4

C. 16

D. 32

Answer: C

Explanation: A 1x16 De-Multiplexer has 16 outputs and 4 selection

lines.

7. Which selection line determines whether the upper or lower

1x8 De-Multiplexer is selected in a 1x16 De-Multiplexer?

A. S0

B. S1

C. S2

D. S3

Answer: D

Explanation: S3 is used by the 1x2 De-Multiplexer to select between the

two 1x8 De-Multiplexers.

8. What is the total number of possible output combinations for

a 1x4 De-Multiplexer?

A. 2

B. 4

C. 8

D. 16

Answer: B

Explanation: With 2 selection lines, there are 2² = 4 possible output

paths.

9. What is the advantage of using lower-order De-Multiplexers to

build higher-order ones?

A. Reduces power consumption

B. Simplifies circuit design

C. Increases memory

D. Improves signal strength

Answer: B

Explanation: Using lower-order De-Multiplexers allows modular and

scalable design of complex circuits.

10. What determines which output line is activated in a De-

Multiplexer?

A. The number of gates

B. The selection line values

C. The clock signal

D. The power supply

E.

Answer: B

IFT 211 DIGITAL AND LOGIC DESIGN

107

Explanation: The output is determined by the values of the selection

lines.

Fill in the Blank Questions

1. A De-Multiplexer with n selection lines can have up to

__________ outputs.

Answer: 2^n

2. A 1x4 De-Multiplexer uses __________ selection lines.

Answer: 2

3. The Boolean expression for output Y3 in a 1x4 De-Multiplexer is

__________.

Answer: s1 \cdot s0 \cdot I

4. In a 1x16 De-Multiplexer, the selection line __________ chooses

between the two 1x8 De-Multiplexers.

Answer: S3

5. The output of a De-Multiplexer is determined by the values of the

__________ lines.

Answer: selection

IFT 211 DIGITAL AND LOGIC DESIGN

108

Unit 5 Decoder

Decoder is a combinational circuit that has ‘n’ input lines and maximum

of 2n output lines. One of these outputs will be active High based on the

combination of inputs present, when the decoder is enabled. That means

decoder detects a particular code. The outputs of the decoder are nothing

but the min terms of ‘n’ input variables lines, when it is enabled.

2 to 4 Decoder

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 &

Y0. The block diagram of 2 to 4 decoder is shown in the following figure

One of these four outputs will be ‘1’ for each combination of inputs when

enable, E is ‘1’. The Truth table of 2 to 4 decoder is shown below.

Enable Inputs Outputs

E A1 A0 Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

From Truth table, we can write the Boolean functions for each output as

Y3 = E.A1.A0

Y2 = E.A1.A0′

Y1 = E.A1′.A0

Y0 = E.A1′.A0′

Each output is having one product term. So, there are four product terms

in total. We can implement these four product terms by using four AND

gates having three inputs each & two inverters. The circuit diagram of 2

to 4 decoder is shown in the following figure.

IFT 211 DIGITAL AND LOGIC DESIGN

109

Each output is having one product term. So, there are four product terms

in total. We can implement these four product terms by using four AND

gates having three inputs each & two inverters. The circuit diagram of 2

to 4 decoder is shown in the following figure.

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of

two input variables A1 & A0, when enable, E is equal to one. If enable, E

is zero, then all the outputs of decoder will be equal to zero.

Similarly, 3 to 8 decoder produces eight min terms of three input variables

A2, A1 & A0 and 4 to 16 decoder produces sixteen min terms of four input

variables A3, A2, A1 & A0.

Implementation of Higher-order Decoders

Now, let us implement the following two higher-order decoders using

lower-order decoders.

• 3 to 8 decoder

• 4 to 16 decoder

3 to 8 Decoder

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders.

We know that 2 to 4 Decoder has two inputs, A1 & A0 and four outputs,

Y3 to Y0. Whereas, 3 to 8 Decoder has three inputs A2, A1 & A0 and eight

outputs, Y7 to Y0.

We can find the number of lower order decoders required for

implementing higher order decoder using the following formula.

Required number of lower order decoders = m2 / m1

Where,

m1 is the number of outputs of lower order decoder.

m2 is the number of outputs of higher order decoder.

IFT 211 DIGITAL AND LOGIC DESIGN

110

Here, m1 = 4 and m2 = 8. Substitute, these two values in the above

formula.

Required number of 2 to 4 decoders = 8 / 4 = 2

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8

decoder. The block diagram of 3 to 8 decoder using 2 to 4 decoders is

shown in the following figure.

The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The

complement of input A2 is connected to Enable, E of lower 2 to 4 decoder

in order to get the outputs, Y3 to Y0. These are the lower four min terms.

The input, A2 is directly connected to Enable, E of upper 2 to 4 decoder

in order to get the outputs, Y7 to Y4. These are the higher four min terms.

4 to 16 Decoder

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders.

We know that 3 to 8 Decoder has three inputs A2, A1 & A0 and eight

outputs, Y7 to Y0. Whereas, 4 to 16 Decoder has four inputs A3, A2, A1 &

A0 and sixteen outputs, Y15 to Y0

We know the following formula for finding the number of lower order

decoders required.

Required number of lower order decoders = m2 / m1

Substitute, m1 = 8 and m2 = 16 in the above formula.

Required number of 3 to 8 decoders = 16 / 8 = 2

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16

decoder. The block diagram of 4 to 16 decoder using 3 to 8 decoders is

shown in the following figure

IFT 211 DIGITAL AND LOGIC DESIGN

111

The parallel inputs A2, A1 & A0 are applied to each 3 to 8 decoder. The

complement of input, A3 is connected to Enable, E of lower 3 to 8 decoder

in order to get the outputs, Y7 to Y0. These are the lower eight min terms.

The input, A3 is directly connected to Enable, E of upper 3 to 8 decoder

in order to get the outputs, Y15 to Y8. These are the higher eight min

terms.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of a decoder in digital circuits?

A. To store binary data

B. To convert analog signals to digital

C. To detect a specific input combination and activate one output

D. To perform arithmetic operations

Answer: C

Explanation: A decoder activates one output based on a specific

combination of input signals.

2. How many outputs does a 2-to-4 decoder have?

A. 2

B. 4

C. 8

IFT 211 DIGITAL AND LOGIC DESIGN

112

D. 16

Answer: B

Explanation: A 2-to-4 decoder has 4 outputs and 2 input lines.

3. What condition must be true for a decoder to activate any

output?

A. All inputs must be zero

B. Enable signal must be high

C. All outputs must be high

D. Inputs must be complemented

Answer: B

Explanation: The decoder only activates outputs when the enable signal

is high.

4. What is the Boolean expression for output Y0 in a 2-to-4

decoder?

A. E \cdot A1 \cdot A0

B. E \cdot A1' \cdot A0'

C. A1 \cdot A0

D. A1' \cdot A0'

Answer: B

Explanation: Y0 is active when both inputs are 0 and enable is 1.

5. How many 2-to-4 decoders are needed to implement a 3-to-8

decoder?

A. 1

B. 2

C. 3

D. 4

Answer: B

Explanation: Two 2-to-4 decoders are required to implement a 3-to-8

decoder.

6. Which input is used to control the enable signal in the 3-to-8

decoder implementation?

A. A0

B. A1

C. A2

D. E

Answer: C

Explanation: A2 is used to enable either the upper or lower 2-to-4

decoder.

7. How many outputs does a 4-to-16 decoder have?

A. 8

B. 12

C. 16

D. 32

Answer: C

Explanation: A 4-to-16 decoder has 16 outputs and 4 input lines.

IFT 211 DIGITAL AND LOGIC DESIGN

113

8. How many 3-to-8 decoders are needed to implement a 4-to-16

decoder?

A. 1

B. 2

C. 4

D. 8

Answer: B

Explanation: Two 3-to-8 decoders are required to implement a 4-to-16

decoder.

9. What do the outputs of a decoder represent when enabled?

A. Max terms

B. Sum terms

C. Min terms

D. Logic gates

Answer: C

Explanation: Decoder outputs represent the min terms of the input

variables.

10. What happens to the outputs of a decoder when the enable

signal is 0?

A. All outputs are high

B. All outputs are undefined

C. All outputs are low

D. Outputs depend on inputs

Answer: C

Explanation: When enable is 0, all outputs of the decoder are 0.

Fill in the Blank Questions

1. A decoder with n input lines can have up to __________ output

lines.

Answer: 2^n

2. The output of a decoder is active only when the __________ signal

is high.

Answer: enable

3. The Boolean expression for output Y3 in a 2-to-4 decoder is

__________.

Answer: E \cdot A1 \cdot A0

4. To implement a 3-to-8 decoder using 2-to-4 decoders, the input

__________ is used to control the enable lines.

Answer: A2

5. The outputs of a decoder represent the __________ of the input

variables.

Answer: min terms

Unit 6: Encoders

An Encoder is a combinational circuit that performs the reverse

operation of Decoder. It has maximum of 2n input lines and ‘n’ output

IFT 211 DIGITAL AND LOGIC DESIGN

114

lines. It will produce a binary code equivalent to the input, which is active

High. Therefore, the encoder encodes 2n input lines with ‘n’ bits. It is

optional to represent the enable signal in encoders.

4 to 2 Encoder

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 &

A0. The block diagram of 4 to 2 Encoder is shown in the following

figure.

At any time, only one of these 4 inputs can be ‘1’ in order to get the

respective binary code at the output. The Truth table of 4 to 2 encoder is

shown below.

Inputs Outputs

Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

From Truth table, we can write the Boolean functions for each output as

A1 = Y3 + Y2

A0 = Y3 + Y1

We can implement the above two Boolean functions by using two input

OR gates. The circuit diagram of 4 to 2 encoder is shown in the

following figure.

IFT 211 DIGITAL AND LOGIC DESIGN

115

The above circuit diagram contains two OR gates. These OR gates encode

the four inputs with two bits

Octal to Binary Encoder

Octal to binary Encoder has eight inputs, Y7 to Y0 and three outputs A2,

A1 & A0. Octal to binary encoder is nothing but 8 to 3 encoder. The block

diagram of octal to binary Encoder is shown in the following figure.

At any time, only one of these eight inputs can be ‘1’ in order to get the

respective binary code. The Truth table of octal to binary encoder is

shown below

IFT 211 DIGITAL AND LOGIC DESIGN

116

From Truth table, we can write the Boolean functions for each output as

A2 = Y7 + Y6 + Y5 + Y4

A1 = Y7 + Y6 + Y3 + Y2

A0 = Y7 + Y5 + Y3 + Y1

We can implement the above Boolean functions by using four input OR

gates. The circuit diagram of octal to binary encoder is shown in the

following figure

The above circuit diagram contains three 4-input OR gates. These OR

gates encode the eight inputs with three bits.

Drawbacks of Encoder

Following are the drawbacks of normal encoder.

• There is an ambiguity, when all outputs of encoder are equal to

zero. Because, it could be the code corresponding to the inputs, when only

least significant input is one or when all inputs are zero.

• If more than one input is active High, then the encoder produces

an output, which may not be the correct code. For example, if both Y3 and

Y6 are ‘1’, then the encoder produces 111 at the output. This is neither

Inputs Outputs

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A2 A1 A0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

IFT 211 DIGITAL AND LOGIC DESIGN

117

equivalent code corresponding to Y3, when it is ‘1’ nor the equivalent

code corresponding to Y6, when it is ‘1’.

So, to overcome these difficulties, we should assign priorities to each

input of encoder. Then, the output of encoder will be the binary code

corresponding to the active High inputs, which has higher priority. This

encoder is called as priority encoder.

Priority Encoder

A 4 to 2 priority encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs

A1 & A0. Here, the input, Y3 has the highest priority, whereas the input,

Y0 has the lowest priority. In this case, even if more than one input is ‘1’

at the same time, the output will be the binary code corresponding to the

input, which is having higher priority.

We considered one more output, V in order to know, whether the code

available at outputs is valid or not.

• If at least one input of the encoder is ‘1’, then the code available at

outputs is a valid one. In this case, the output, V will be equal to 1.

• If all the inputs of encoder are ‘0’, then the code available at

outputs is not a valid one. In this case, the output, V will be equal to 0.

•

The Truth table of 4 to 2 priority encoder is shown below.

Inputs Outputs

Y3 Y2 Y1 Y0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 x 0 1 1

0 1 x x 1 0 1

1 x x x 1 1 1

IFT 211 DIGITAL AND LOGIC DESIGN

118

Use 4 variable K-maps for getting simplified expressions for each

output.

The simplified Boolean functions are

A1 = Y3 + Y2

A0 = Y3 + Y2′Y1

Similarly, we will get the Boolean function of output, V as

V = Y3 + Y2 + Y1 + Y0

We can implement the above Boolean functions using logic gates.

The circuit diagram of 4 to 2 priority encoder is shown in the following

figure.

The above circuit diagram contains two 2-input OR gates, one 4-input OR

gate, one 2input AND gate & an inverter. Here AND gate & inverter

combination are used for producing a valid code at the outputs, even when

IFT 211 DIGITAL AND LOGIC DESIGN

119

multiple inputs are equal to ‘1’ at the same time. Hence, this circuit

encodes the four inputs with two bits based on the priority assigned to

each input.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of an encoder in digital circuits?

A. To decode binary inputs

B. To convert binary to decimal

C. To generate a binary code from active input lines

D. To store binary data

Answer: C

Explanation: An encoder converts active High input signals into a binary

code.

2. How many outputs does a 4-to-2 encoder produce?

A. 2

B. 4

C. 8

D. 1

Answer: A

Explanation: A 4-to-2 encoder has 4 inputs and produces 2 output bits.

3. What is the Boolean expression for output A1 in a 4-to-2

encoder?

A. Y3 + Y1

B. Y3 + Y2

C. Y2 + Y1

D. Y3 + Y0

Answer: B

Explanation: A1 = Y3 + Y2

4. How many inputs does an octal-to-binary encoder have?

A. 4

B. 8

C. 2

D. 16

Answer: B

Explanation: An octal-to-binary encoder has 8 inputs and 3 outputs.

5. What is the Boolean expression for output A0 in an octal-to-

binary encoder?

A. Y7 + Y5 + Y3 + Y1

B. Y7 + Y6 + Y3 + Y2

C. Y7 + Y6 + Y5 + Y4

D. Y7 + Y5 + Y2 + Y0

Answer: A

Explanation: A0 = Y7 + Y5 + Y3 + Y1

6. What is a major drawback of a normal encoder?

IFT 211 DIGITAL AND LOGIC DESIGN

120

A. It requires too many gates

B. It cannot handle decimal inputs

C. It produces ambiguous output when multiple inputs are active

D. It consumes high power

Answer: C

Explanation: Normal encoders can produce incorrect outputs if more

than one input is active.

7. What is the solution to the ambiguity in normal encoders?

A. Use more gates

B. Use a decoder instead

C. Assign priorities to inputs

D. Increase the number of outputs

Answer: C

Explanation: Priority encoders resolve ambiguity by assigning priority

to inputs.

8. In a 4-to-2 priority encoder, which input has the highest

priority?

A. Y0

B. Y1

C. Y2

D. Y3

Answer: D

Explanation: Y3 has the highest priority.

9. What does the output V represent in a priority encoder?

A. Voltage level

B. Validity of the output code

C. Number of active inputs

D. Enable signal

Answer: B

Explanation: V indicates whether the output code is valid.

10. What is the Boolean expression for output A0 in a priority

encoder?

A. Y3 + Y2

B. Y3 + Y2′Y1

C. Y2 + Y1

D. Y3 + Y1

Answer: B

Explanation: A0 = Y3 + Y2′Y1

Fill in the Blank Questions

1. An encoder converts active High inputs into a __________ code.

Answer: binary

2. A 4-to-2 encoder has __________ inputs and 2 outputs.

Answer: 4

IFT 211 DIGITAL AND LOGIC DESIGN

121

3. The Boolean expression for output A2 in an octal-to-binary

encoder is __________.

Answer: Y7 + Y6 + Y5 + Y4

4. A priority encoder resolves ambiguity by assigning __________ to

inputs.

Answer: priority

5. The output V in a priority encoder indicates whether the output is

__________.

Answer: valid

IFT 211 DIGITAL AND LOGIC DESIGN

122

Unit 7: Latches

There are two types of memory elements based on the type of triggering

that is suitable to operate it.

• Latches

• Flip-flops

Latches operate with enable signal, which is level sensitive. Whereas,

flip-flops are edge sensitive. We will discuss about flip-flops in next

lecture. Now, let us discuss about SR Latch & D Latch one by one.

SR Latch

SR Latch is also called as Set Reset Latch. This latch affects the outputs

as long as the enable, E is maintained at ‘1’. The circuit diagram of SR

Latch is shown

in the following figure.

This circuit has two inputs S & R and two outputs Qt & Qt’. The upper

NOR gate has two inputs R & complement of present state, Qt’ and

produces next state, Qt + 1 when enable, E is ‘1’.

Similarly, the lower NOR gate has two inputs S & present state, Qt and

produces complement of next state, Qt + 1 when enable, E is ‘1’.

We know that a 2-input NOR gate produces an output, which is the

complement of another input when one of the input is ‘0’. Similarly, it

produces ‘0’ output, when one of the input is ‘1’.

• If S = 1, then next state Qt + 1 will be equal to ‘1’ irrespective of

present state, Qt values.

• If R = 1, then next state Qt + 1 will be equal to ‘0’ irrespective of

present state, Qt values.

At any time, only of those two inputs should be ‘1’. If both inputs are ‘1’,

then the next state Qt + 1 value is undefined.

The following table shows the state table of SR latch.

IFT 211 DIGITAL AND LOGIC DESIGN

123

S R Qt + 1

0 0 Qt

0 1 0

1 0 1

1 1 -

Therefore, SR Latch performs three types of functions such as Hold, Set

& Reset based on the input conditions.

D Latch

There is one drawback of SR Latch. That is the next state value can’t be

predicted when both the inputs S & R are one. So, we can overcome this

difficulty by D Latch. It is also called as Data Latch. The circuit

diagram of D Latch is shown in the following figure.

This circuit has single input D and two outputs Qt & Qt’. D Latch is

obtained from SR Latch by placing an inverter between S amp;& R inputs

and connect D input to S. That means we eliminated the combinations of

S & R are of same value.

• If D = 0 → S = 0 & R = 1, then next state Qt + 1 will be equal to

‘0’ irrespective of present state, Qt values. This is corresponding to the

second row of SR Latch state table.

• If D = 1 → S = 1 & R = 0, then next state Qt + 1 will be equal to

‘1’ irrespective of present state, Qt values. This is corresponding to the

third row of SR Latch state table.

The following table shows the state table of D latch.

D Qt + 1

0 0

1 1

Therefore, D Latch Hold the information that is available on data input,

D. That means the output of D Latch is sensitive to the changes in the

input, D as long as the enable is High.

IFT 211 DIGITAL AND LOGIC DESIGN

124

In this chapter, we implemented various Latches by providing the cross

coupling between NOR gates. Similarly, you can implement these

Latches using NAND gates.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What distinguishes latches from flip-flops in terms of

triggering?

A. Latches are edge-triggered

B. Flip-flops are level-sensitive

C. Latches are level-sensitive

D. Flip-flops use enable signals

Answer: C

Explanation: Latches respond to the level of the enable signal, while flip-

flops respond to clock edges.

2. What does SR in SR Latch stand for?

A. Set and Reset

B. Store and Retrieve

C. Signal and Response

D. Start and Run

Answer: A

Explanation: SR stands for Set and Reset, the two control inputs of the

latch.

3. What happens when both S and R inputs are 1 in an SR Latch?

A. Output is 1

B. Output is 0

C. Output holds previous state

D. Output is undefined

Answer: D

Explanation: When both inputs are 1, the output becomes unpredictable

or undefined.

4. What is the function of the enable signal in a latch?

A. It resets the latch

B. It stores the output

C. It allows the latch to respond to inputs

D. It disables the circuit

Answer: C

Explanation: The latch responds to input changes only when the enable

signal is high.

5. Which logic gate is used in the basic SR Latch

implementation?

A. AND

B. OR

C. NOR

D. XOR

Answer: C

IFT 211 DIGITAL AND LOGIC DESIGN

125

Explanation: SR Latches are commonly implemented using cross-

coupled NOR gates.

6. What is the main drawback of the SR Latch?

A. It consumes too much power

B. It cannot store data

C. It has an undefined state when both inputs are 1

D. It requires a clock signal

Answer: C

Explanation: The SR Latch becomes unstable when both S and R are 1.

7. How does the D Latch resolve the SR Latch’s drawback?

A. By using flip-flops

B. By removing the enable signal

C. By ensuring S and R are never both 1

D. By adding a clock input

Answer: C

Explanation: The D Latch uses an inverter to prevent S and R from being

1 simultaneously.

8. What does the D input in a D Latch represent?

A. Delay

B. Data

C. Drive

D. Direction

Answer: B

Explanation: D stands for Data, which is stored when the latch is

enabled.

9. What is the output of a D Latch when D = 1 and enable is high?

A. 0

B. 1

C. Undefined

D. Previous state

Answer: B

Explanation: The output follows the input D when enabled.

10. Which gates can also be used to implement latches besides

NOR gates?

A. XOR gates

B. NAND gates

C. AND gates

D. OR gates

Answer: B

Explanation: Latches can also be implemented using NAND gates.

Fill in the Blank Questions

1. Latches are __________ sensitive, while flip-flops are edge

sensitive.

Answer: level

IFT 211 DIGITAL AND LOGIC DESIGN

126

2. The SR Latch has two inputs: __________ and Reset.

Answer: Set

3. When both S and R are 1, the SR Latch output is __________.

Answer: undefined

4. The D Latch eliminates the undefined state by using an

__________ between S and R inputs.

Answer: inverter

5. The output of a D Latch follows the input D when the __________

signal is high.

Answer: enable

IFT 211 DIGITAL AND LOGIC DESIGN

127

Unit 8 Flip-Flops

Previously, we discussed about Latches. Those are the basic building

blocks of flip-flops. We can implement flip-flops in two methods.

In first method, cascade two latches in such a way that the first latch is

enabled for every positive clock pulse and second latch is enabled for

every negative clock pulse. So that the combination of these two latches

become a flip-flop.

In second method, we can directly implement the flip-flop, which is edge

sensitive. In this chapter, let us discuss the following flip-flops using

second method.

• SR Flip-Flop

• D Flip-Flop

• JK Flip-Flop

• T Flip-Flop

SR Flip-Flop

SR flip-flop operates with only positive clock transitions or negative

clock transitions. Whereas, SR latch operates with enable signal.

The circuit diagram of SR flip-flop is shown in the following figure.

This circuit has two inputs S & R and two outputs Qt & Qt’. The operation

of SR flipflop is similar to SR Latch. But, this flip-flop affects the outputs

only when positive transition of the clock signal is applied instead of

active enable.

The following table shows the state table of SR flip-flop.

S R Qt + 1

0 0 Qt

0 1 0

1 0 1

1 1 -

Here, Qt & Qt+1 are present state & next state respectively. So, SR flip-

flop can be used for one of these three functions such as Hold, Reset &

IFT 211 DIGITAL AND LOGIC DESIGN

128

Set based on the input conditions, when positive transition of clock signal

is applied. The following table shows the characteristic table of SR flip-

flop.

Present Inputs Present State Next State

S R Qt Qt + 1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 x

1 1 1 x

By using three variable K-Map, we can get the simplified expression for

next state, Qt + 1. The three variable K-Map for next state, Qt + 1 is

shown in the following figure.

The maximum possible groupings of adjacent ones are already shown in

the figure. Therefore, the simplified expression for next state Qt + 1 is

Q (t + 1) = S + R′Q (t)

D Flip-Flop

IFT 211 DIGITAL AND LOGIC DESIGN

129

D flip-flop operates with only positive clock transitions or negative clock

transitions. Whereas, D latch operates with enable signal. That means, the

output of D flip-flop is insensitive to the changes in the input, D except

for active transition of the clock signal. The circuit diagram of D flip-

flop is shown in the following figure.

This circuit has single input D and two outputs Qt & Qt’. The operation

of D flip-flop is similar to D Latch. But, this flip-flop affects the outputs

only when positive transition of the clock signal is applied instead of

active enable.

The following table shows the state table of D flip-flop.

D Qt + 1

0 0

1 1

Therefore, D flip-flop always Hold the information, which is available on

data input, D of earlier positive transition of clock signal. From the above

state table, we can directly write the next state equation as

Qt + 1 = D

Next state of D flip-flop is always equal to data input, D for every positive

transition of the clock signal. Hence, D flip-flops can be used in

registers, shift registers and some of the counters.

JK Flip-Flop

JK flip-flop is the modified version of SR flip-flop. It operates with only

positive clock transitions or negative clock transitions. The circuit

diagram of JK flip-flop is shown in the following figure.

This circuit has two inputs J & K and two outputs Qt & Qt’. The operation

of JK flip-flop is similar to SR flip-flop. Here, we considered the inputs

of SR flip-flop as S = J Qt’ and R = KQt in order to utilize the modified

SR flip-flop for 4 combinations of inputs.

IFT 211 DIGITAL AND LOGIC DESIGN

130

The following table shows the state table of JK flip-flop.

J K Qt + 1

0 0 Qt

0 1 0

1 0 1

1 1 Qt'

Here, Qt & Qt + 1 are present state & next state respectively. So, JK flip-

flop can be used for one of these four functions such as Hold, Reset, Set

& Complement of present state based on the input conditions, when

positive transition of clock signal is applied. The following table shows

the characteristic table of JK flip-flop.

Present Inputs Present State Next State

J K Qt Qt+1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

IFT 211 DIGITAL AND LOGIC DESIGN

131

By using three variable K-Map, we can get the simplified expression for

next state, Qt + 1. Three variable K-Map for next state, Qt + 1 is shown

in the following figure.

The maximum possible groupings of adjacent ones are already shown in

the figure. Therefore, the simplified expression for next state Qt + 1 is

Q (t + 1) = JQ (t)′ + K′Q (t)

T Flip-Flop

T flip-flop is the simplified version of JK flip-flop. It is obtained by

connecting the same input ‘T’ to both inputs of JK flip-flop. It operates

with only positive clock transitions or negative clock transitions.

The circuit diagram of T flip-flop is shown in the following figure

This circuit has single input T and two outputs Qt & Qt’. The operation

of T flip-flop is same as that of JK flip-flop. Here, we considered the

inputs of JK flip-flop as J = T and K = T in order to utilize the modified

JK flip-flop for 2 combinations of inputs. So, we eliminated the other two

IFT 211 DIGITAL AND LOGIC DESIGN

132

combinations of J & K, for which those two values are complement to

each other in T flip-flop.

The following table shows the state table of T flip-flop.

D Qt + 1

0 Qt

1 Qt’

Here, Qt & Qt + 1 are present state & next state respectively. So, T flip-

flop can be used for one of these two functions such as Hold, &

Complement of present state based on the input conditions, when positive

transition of clock signal is applied. The following table shows

the characteristic table of T flip-flop.

Inputs Present State Next State

T Qt Qt + 1

0 0 0

0 1 1

1 0 1

1 1 0

From the above characteristic table, we can directly write the next state

equation as

Q (t + 1) = T′Q (t) + TQ (t)′

⇒ Q (t + 1) = T ⊕ Q (t)

The output of T flip-flop always toggles for every positive transition of

the clock signal, when input T remains at logic High 11. Hence, T flip-

flop can be used in counters.

In this chapter, we implemented various flip-flops by providing the cross

coupling between NOR gates. Similarly, you can implement these flip-

flops by using NAND gates.

Tutor Marked Assignment

1. Design a counter with sequences 0, 2, 3, 1, 0 using D-flip flops.

2. If both S and R inputs of an SR latch formed by cross-coupling

two NOR gates are set to 0, the output is?

3. A MOD-16 ripple counter using J-K flip-flop has a current state

1001. What will the state be after 31 clock pulses?

4. A specific counter is using five S-R flip-flops. So what is the

maximum number of states possible?

5. What is the maximum delay that can occur if four flip-flops are

connected as a ripple counter and each flip-flop has propagation delays of

tPHL = 22 ns and tPLH = 15 ns?

IFT 211 DIGITAL AND LOGIC DESIGN

133

SELF-ASSSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What distinguishes flip-flops from latches?

A. Flip-flops are level-sensitive

B. Flip-flops are edge-sensitive

C. Flip-flops use enable signals

D. Flip-flops operate without clock signals

E. Answer: B

Explanation: Flip-flops respond to clock edges, unlike latches which are

level-sensitive.

2. Which flip-flop is a modified version of the SR flip-flop?

A. D flip-flop

B. T flip-flop

C. JK flip-flop

D. Master-slave flip-flop

Answer: C

Explanation: JK flip-flop is derived from the SR flip-flop with added

logic to handle all input combinations.

3. What is the next state equation for a D flip-flop?

A. Qt + 1 = D

B. Qt + 1 = D′

C. Qt + 1 = Qt

D. Qt + 1 = D ⊕ Qt

E. Answer: A

Explanation: The next state of a D flip-flop is equal to the input D at the

clock edge.

4. What happens when both inputs of an SR flip-flop are 1?

A. Output is 0

B. Output is 1

C. Output toggles

D. Output is undefined

Answer: D

Explanation: The SR flip-flop enters an undefined state when both S and

R are 1.

5. Which flip-flop toggles its output on every clock edge when

input is high?

A. SR flip-flop

B. D flip-flop

C. T flip-flop

D. JK flip-flop

Answer: C

IFT 211 DIGITAL AND LOGIC DESIGN

134

Explanation: T flip-flop toggles its output when T = 1 and a clock edge

occurs.

6. What is the next state equation for a JK flip-flop?

A. Qt + 1 = J + K′

B. Qt + 1 = JQt′ + K′Qt

C. Qt + 1 = J′Qt + KQt′

D. Qt + 1 = J ⊕ K

Answer: B

Explanation: This equation accounts for all input combinations and

toggling behavior.

7. Which flip-flop is derived by connecting the same input to both

J and K of a JK flip-flop?

A. SR flip-flop

B. D flip-flop

C. T flip-flop

D. Master-slave flip-flop

Answer: C

Explanation: T flip-flop is formed by tying J and K together.

8. What is the next state equation for a T flip-flop?

A. Qt + 1 = T

B. Qt + 1 = T′Qt + TQt′

C. Qt + 1 = T ⊕ Qt

D. Qt + 1 = Qt

Answer: C

Explanation: The output toggles when T is high, represented by the XOR

operation.

9. Which flip-flop is best suited for use in counters?

A. SR flip-flop

B. D flip-flop

C. T flip-flop

D. JK flip-flop

Answer: C

Explanation: T flip-flops toggle on each clock pulse, making them ideal

for counting.

10. What logic gates can be used to implement flip-flops besides

NOR gates?

A. XOR gates

B. NAND gates

C. AND gates

D. OR gates

Answer: B

Explanation: Flip-flops can also be constructed using NAND gates.

IFT 211 DIGITAL AND LOGIC DESIGN

135

Fill in the Blank Questions

1. Flip-flops are __________ sensitive, responding to clock

transitions.

Answer: edge

2. The SR flip-flop enters an __________ state when both S and R

are 1.

Answer: undefined

3. The next state of a D flip-flop is equal to the input __________.

Answer: D

4. The T flip-flop toggles its output when input T is __________.

Answer: high

5. The next state equation for a T flip-flop is Q(t + 1) = __________.

Answer: T ⊕ Q(t)

IFT 211 DIGITAL AND LOGIC DESIGN

136

Module 4 Sequential Circuits

Unit 1 Sequential Circuits

Unit 2 Conversion of Flip-Flops

Unit 3 Registers

Unit 4 Counters

Unit 1: Sequential Circuits

We discussed various combinational circuits in earlier chapters. All these

circuits have a set of outputs, which depends only on the combination of

present inputs. The following figure shows the block diagram of

sequential circuit.

This sequential circuit contains a set of inputs and outputs. The outputs of

sequential circuit depends not only on the combination of present inputs

but also on the previous outputs. Previous output is nothing but

the present state. Therefore, sequential circuits contain combinational

circuits along with memory storage elements. Some sequential circuits

may not contain combinational circuits, but only memory elements.

Following table shows the differences between combinational circuits

and sequential circuits.

IFT 211 DIGITAL AND LOGIC DESIGN

137

Combinational Circuits Sequential Circuits

Outputs depend only on

present inputs.

Outputs depend on both present inputs

and present state.

Feedback path is not present. Feedback path is present.

Memory elements are not

required.

Memory elements are required.

Clock signal is not required. Clock signal is required.

Easy to design. Difficult to design.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What distinguishes sequential circuits from combinational

circuits?

A. They use only logic gates

B. Their outputs depend only on current inputs

C. Their outputs depend on current inputs and previous states

D. They do not require memory

Answer: C

Explanation: Sequential circuits consider both present inputs and stored

previous outputs.

2. Which of the following is NOT a feature of combinational

circuits?

A. No feedback path

B. No memory elements

C. Clock signal required

D. Outputs depend only on present inputs

Answer: C

Explanation: Combinational circuits do not require a clock signal.

3. What is the role of memory elements in sequential circuits?

A. To store binary numbers

B. To hold previous output states

C. To convert analog signals

D. To generate clock pulses

Answer: B

Explanation: Memory elements store the present state, which influences

future outputs.

4. Which type of circuit includes a feedback path?

A. Combinational circuit

B. Arithmetic circuit

C. Sequential circuit

D. Decoder circuit

Answer: C

Explanation: Feedback paths are a defining feature of sequential circuits.

IFT 211 DIGITAL AND LOGIC DESIGN

138

5. Which of the following is required for the operation of

sequential circuits?

A. Voltage regulator

B. Clock signal

C. Amplifier

D. Comparator

Answer: B

Explanation: Sequential circuits rely on clock signals to synchronize

state changes.

6. Which circuit type is generally easier to design?

A. Sequential

B. Combinational

C. Analog

D. Hybrid

Answer: B

Explanation: Combinational circuits are simpler because they don’t

involve memory or timing.

7. What does the present state in a sequential circuit refer to?

A. The current input

B. The output of the last clock cycle

C. The voltage level

D. The logic gate used

Answer: B

Explanation: Present state is the stored output from the previous cycle.

8. Which of the following is NOT typically found in a sequential

circuit?

A. Memory elements

B. Feedback paths

C. Clock signal

D. Only logic gates

Answer: D

Explanation: Sequential circuits include more than just logic gates—they

also have memory and timing components.

9. Which statement is true about combinational circuits?

A. They require a clock signal

B. They store previous outputs

C. They are difficult to design

D. Their outputs depend only on current inputs

Answer: D

Explanation: Combinational circuits produce outputs based solely on

current inputs.

10. What type of circuit is used when output must reflect both

current input and history?

A. Decoder

B. Combinational

C. Sequential

IFT 211 DIGITAL AND LOGIC DESIGN

139

D. Multiplexer

Answer: C

Explanation: Sequential circuits incorporate memory to reflect history in

their outputs.

Fill in the Blank Questions

1. Sequential circuits require __________ elements to store previous

outputs.

Answer: memory

2. Combinational circuits do not include a __________ path.

Answer: feedback

3. The output of a sequential circuit depends on present inputs and

__________ state.

Answer: present

4. Sequential circuits are __________ to design compared to

combinational circuits.

Answer: difficult

5. A __________ signal is necessary for the operation of sequential

circuits.

Answer: clock

IFT 211 DIGITAL AND LOGIC DESIGN

140

Unit 2 Conversion of Flip-Flops

In previous lectures, we discussed the four flip-flops, namely SR flip-flop,

D flip-flop, JK flip-flop & T flip-flop. We can convert one flip-flop into

the remaining three flip-flops by including some additional logic. So,

there will be total of twelve flip-flop conversions.

Follow these steps for converting one flip-flop to the other.

• Consider the characteristic table of desired flip-flop.

• Fill the excitation values inputs of given flip-flop for each

combination of present state and next state. The excitation table for all

flip-flops is shown below.

• Get the simplified expressions for each excitation input. If

necessary, use Kmaps for simplifying.

• Draw the circuit diagram of desired flip-flop according to the

simplified expressions using given flip-flop and necessary logic gates.

Now, let us convert few flip-flops into other. Follow the same process for

remaining flipflop conversions.

SR Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of SR flip-flop to other flip-

flops.

• SR flip-flop to D flip-flop

• SR flip-flop to JK flip-flop

• SR flip-flop to T flip-flop

SR flip-flop to D flip-flop conversion

Here, the given flip-flop is SR flip-flop and the desired flip-flop is D flip-

flop. Therefore, consider the following characteristic table of D flip-

flop.

D flip-flop input Present State Next State

D Qt Qt + 1

0 0 0

0 1 0

1 0 1

1 1 1

Present

State

Next

State

SR flip-

flop inputs

D flip-

flop

input

JK flip-

flop inputs

T flip-

flop

input

Qt Qt + 1 S R D J K T

0 0 0 x 0 0 x 0

0 1 1 0 1 1 x 1

1 0 0 1 0 x 1 1

1 1 x 0 1 x 0 0

IFT 211 DIGITAL AND LOGIC DESIGN

141

We know that SR flip-flop has two inputs S & R. So, write down the

excitation values of SR flip-flop for each combination of present state and

next state values. The following table shows the characteristic table of D

flip-flop along with the excitation inputs of SR flip-flop.

From the above table, we can write the Boolean functions for each input

as below.

S = m2 + d3

R = m1 + d0

We can use 2 variable K-Maps for getting simplified expressions for these

inputs. The k-Maps for S & R are shown below.

So, we got S = D & R = D' after simplifying. The circuit diagram of D

flip-flop is shown in the following figure.

D flip-flop

input

Present State Next State SR flip-flop

inputs

D Qt Qt + 1 S R

0 0 0 0 x

0 1 0 0 1

1 0 1 1 0

1 1 1 x 0

IFT 211 DIGITAL AND LOGIC DESIGN

142

This circuit consists of SR flip-flop and an inverter. This inverter

produces an output, which is complement of input, D. So, the overall

circuit has single input, D and two outputs Qt & Qt'. Hence, it is a D flip-

flop. Similarly, you can do other two conversions.

D Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of D flip-flop to other flip-

flops.

• D flip-flop to T flip-flop

• D flip-flop to SR flip-flop

• D flip-flop to JK flip-flop

D flip-flop to T flip-flop conversion

Here, the given flip-flop is D flip-flop and the desired flip-flop is T flip-

flop. Therefore, consider the following characteristic table of T flip-

flop.

T flip-flop input Present State Next State

T Qt Qt + 1

0 0 0

0 1 1

1 0 1

1 1 0

T flip-flop input Present State Next State D flip-flop input

T Qt Qt + 1 D

IFT 211 DIGITAL AND LOGIC DESIGN

143

We know

that D flip-

flop has

single input

D. So, write

down the

excitation

values of D

flip-flop for

each combination of present state and next state values. The following

table shows the characteristic table of T flip-flop along with

the excitation input of D flip-flop.

From the above table, we can directly write the Boolean function of D as

below.

D = T ⊕ Q (t)

So, we require a two input Exclusive-OR gate along with D flip-flop.

The circuit diagram of T flip-flop is shown in the following figure.

This circuit consists of D flip-flop and an Exclusive-OR gate. This

Exclusive-OR gate produces an output, which is Ex-OR of T and Qt. So,

the overall circuit has single input, T and two outputs Qt & Qt’. Hence, it

is a T flip-flop. Similarly, you can do other two conversions.

JK Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of JK flip-flop to other flip-

flops.

• JK flip-flop to T flip-flop

• JK flip-flop to D flip-flop

• JK flip-flop to SR flip-flop

JK flip-flop to T flip-flop conversion

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

IFT 211 DIGITAL AND LOGIC DESIGN

144

Here, the given flip-flop is JK flip-flop and the desired flip-flop is T flip-

flop. Therefore, consider the following characteristic table of T flip-

flop.

T flip-flop input Present State Next State

T Qt Qt + 1

0 0 0

0 1 1

1 0 1

1 1 0

We know that JK flip-flop has two inputs J & K. So, write down the

excitation values of JK flip-flop for each combination of present state and

next state values. The following table shows the characteristic table of T

flip-flop along with the excitation inputs of JK flipflop.

T flip-flop input Present State Next State JK flip-flop inputs

T Qt Qt + 1 J K

0 0 0 0 x

0 1 1 x 0

1 0 1 1 x

1 1 0 x 1

From the above table, we can write the Boolean functions for each input

as below.

J = m2 + d1 + d3

K = m3 + d0 + d2

We can use 2 variable K-Maps for getting simplified expressions for these

two inputs. The k-Maps for J & K are shown below.

IFT 211 DIGITAL AND LOGIC DESIGN

145

So, we got, J = T & K = T after simplifying. The circuit diagram of T

flip-flop is shown in the following figure.

This circuit consists of JK flip-flop only. It doesn’t require any other

gates. Just connect the same input T to both J & K. So, the overall circuit

has single input, T and two outputs Qt & Qt’. Hence, it is a T flip-flop.

Similarly, you can do other two conversions.

T Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of T flip-flop to other flip-

flops.

• T flip-flop to D flip-flop

• T flip-flop to SR flip-flop

• T flip-flop to JK flip-flop

T flip-flop to D flip-flop conversion

Here, the given flip-flop is T flip-flop and the desired flip-flop is D flip-

flop. Therefore, consider the characteristic table of D flip-flop and write

down the excitation values of T flip-flop for each combination of present

state and next state values. The following table shows the characteristic

table of D flip-flop

along with the excitation input of T flip-flop.

From the above table, we can directly write the Boolean function of T as

below.

T = D ⊕ Q (t)

So, we require a two input Exclusive-OR gate along with T flip-flop.

The circuit diagram of D flip-flop is shown in the following figure.

D flip-flop input Present State Next State T flip-flop input

D Qt Qt + 1 T

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

IFT 211 DIGITAL AND LOGIC DESIGN

146

This circuit consists of T flip-flop and an Exclusive-OR gate. This

Exclusive-OR gate produces an output, which is Ex-OR of D and Qt. So,

the overall circuit has single input, D and two outputs Qt & Qt’. Hence, it

is a D flip-flop. Similarly, you can do other two conversions.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

1. What distinguishes sequential logic circuits from combinational

ones?

A. They use only AND gates

B. Their output depends on current inputs and past states

C. They do not use memory

D. They operate randomly

2. Which of the following is a basic sequential circuit?

A. Multiplexer

B. Decoder

C. Flip-flop

D. Comparator

3. What is the main function of a flip-flop?

A. To perform arithmetic

B. To store a single bit of data

C. To decode signals

D. To compare inputs

4. Which flip-flop has a toggle feature?

A. SR

B. JK

C. D

D. T

5. What does the clock signal do in sequential circuits?

A. It powers the circuit

IFT 211 DIGITAL AND LOGIC DESIGN

147

B. It synchronizes changes in state

C. It stores data

D. It resets the system

6. Which flip-flop is commonly used for data storage?

A. T

B. D

C. JK

D. SR

7. What is the output of a T flip-flop when the input is 1?

A. No change

B. Toggle

C. Reset

D. Set

8. Which of the following is a type of sequential circuit?

A. Full adder

B. Counter

C. Multiplexer

D. Decoder

9. What is the function of a register in sequential logic?

A. To perform logic operations

B. To store multiple bits of data

C. To decode signals

D. To compare inputs

10. Which flip-flop is known for its simplicity and direct data input?

A. JK

B. D

C. T

D. SR

Fill in the Blank Questions

1. Sequential circuits depend on current inputs and __________

states. → past

2. A __________ stores a single bit of data. → flip-flop

3. The __________ signal synchronizes changes in sequential

circuits. → clock

4. A __________ is used to store multiple bits of data. → register

5. The __________ flip-flop toggles its output when the input is 1.

→ T

IFT 211 DIGITAL AND LOGIC DESIGN

148

Unit 3 Registers

Shift Register

We know that one flip-flop can store one-bit of information. In order to

store multiple bits of information, we require multiple flip-flops. The

group of flip-flops, which are used to hold store the binary data is known

as register.

If the register is capable of shifting bits either towards right hand side or

towards left hand side is known as shift register. An ‘N’ bit shift register

contains ‘N’ flip-flops. Following are the four types of shift registers

based on applying inputs and accessing of outputs.

• Serial In − Serial Out shift register

• Serial In − Parallel Out shift register

• Parallel In − Serial Out shift register

• Parallel In − Parallel Out shift register

Serial In − Serial Out SISO Shift Register

The shift register, which allows serial input and produces serial output is

known as Serial In – Serial Out SISO shift register. The block

diagram of 3-bit SISO shift register is shown in the following figure.

This block diagram consists of three D flip-flops, which are cascaded.

That means, output of one D flip-flop is connected as the input of next D

flip-flop. All these flip-flops are synchronous with each other since, the

same clock signal is applied to each one.

In this shift register, we can send the bits serially from the input of left

most D flip-flop. Hence, this input is also called as serial input. For every

positive edge triggering of clock signal, the data shifts from one stage to

IFT 211 DIGITAL AND LOGIC DESIGN

149

the next. So, we can receive the bits serially from the output of right most

D flip-flop. Hence, this output is also called as serial output.

Example

Let us see the working of 3-bit SISO shift register by sending the binary

information “011” from LSB to MSB serially at the input.

Assume, initial status of the D flip-flops from leftmost to rightmost

is Q2Q1Q0 = 000. We can understand the working of 3-bit SISO shift

register from the following table.

No of positive edge

of Clock

Serial Input Q2 Q1 Q0

0 - 0 0 0

1 1LSB 1 0 0

2 1 1 1 0

3 0MSB 0 1 1LSB

4 - - 0 1

5 - - - 0MSB

The initial status of the D flip-flops in the absence of clock signal

is Q2Q1Q0 = 000. Here, the serial output is coming from Q0. So, the

LSB 1 is received at 3rd positive edge of clock and the MSB 0 is received

at 5th positive edge of clock.

Therefore, the 3-bit SISO shift register requires five clock pulses in order

to produce the valid output. Similarly, the N-bit SISO shift

register requires 2N-1 clock pulses in order to shift ‘N’ bit information.

Serial In - Parallel Out SIPO Shift Register

The shift register, which allows serial input and produces parallel output

is known as Serial In – Parallel Out SIPO shift register. The block

diagram of 3-bit SIPO shift register is shown in the following figure.

This circuit consists of three D flip-flops, which are cascaded. That

IFT 211 DIGITAL AND LOGIC DESIGN

150

means, output of one D flip-flop is connected as the input of next D flip-

flop. All these flip-flops are synchronous with each other since, the same

clock signal is applied to each one.

In this shift register, we can send the bits serially from the input of left

most D flip-flop. Hence, this input is also called as serial input. For every

positive edge triggering of clock signal, the data shifts from one stage to

the next. In this case, we can access the outputs of each D flip-flop in

parallel. So, we will get parallel outputs from this shift register.

Example

Let us see the working of 3-bit SIPO shift register by sending the binary

information “011” from LSB to MSB serially at the input.

Assume, initial status of the D flip-flops from leftmost to rightmost

is Q2Q1Q0 = 000. Here, Q2 & Q0 are MSB & LSB respectively. We can

understand the working of 3-bit SIPO shift register from the following

table.

No of positive

edge of Clock

Serial Input Q2MSB Q1 Q0LSB

0 - 0 0 0

1 1LSB 1 0 0

2 1 1 1 0

3 0MSB 0 1 1

The initial status of the D flip-flops in the absence of clock signal

is Q2Q1Q0 = 000. The binary information “011” is obtained in parallel at

the outputs of D flip-flops for third positive edge of clock.

So, the 3-bit SIPO shift register requires three clock pulses in order to

produce the valid output. Similarly, the N-bit SIPO shift

register requires N clock pulses in order to shift ‘N’ bit information.

Parallel In − Serial Out PISO Shift Register

The shift register, which allows parallel input and produces serial output

is known as Parallel In − Serial Out PISO shift register. The block

diagram of 3-bit PISO shift register is shown in the following figure.

IFT 211 DIGITAL AND LOGIC DESIGN

151

This circuit consists of three D flip-flops, which are cascaded. That

means, output of one D flip-flop is connected as the input of next D flip-

flop. All these flip-flops are synchronous with each other since, the same

clock signal is applied to each one.

In this shift register, we can apply the parallel inputs to each D flip-flop

by making Preset Enable to 1. For every positive edge triggering of clock

signal, the data shifts from one stage to the next. So, we will get the serial

output from the right most D flip-flop.

Example

Let us see the working of 3-bit PISO shift register by applying the binary

information “011” in parallel through preset inputs.

Since the preset inputs are applied before positive edge of Clock, the

initial status of the D flip-flops from leftmost to rightmost will be Q2Q1Q0

= 011. We can understand the working of 3-bit PISO shift register from

the following table.

IFT 211 DIGITAL AND LOGIC DESIGN

152

Here, the serial output is coming from Q0. So, the LSB 11 is received

before applying positive edge of clock and the MSB 00 is received at

2nd positive edge of clock.

Therefore, the 3-bit PISO shift register requires two clock pulses in order

to produce the valid output. Similarly, the N-bit PISO shift

register requires N-1 clock pulses in order to shift ‘N’ bit information.

Parallel In - Parallel Out PIPO Shift Register

The shift register, which allows parallel input and produces parallel output

is known as Parallel In − Parallel Out PIPO shift register. The block

diagram of 3-bit PIPO shift register is shown in the following figure.

This circuit consists of three D flip-flops, which are cascaded. That

means, output of one D flip-flop is connected as the input of next D flip-

flop. All these flip-flops are synchronous with each other since, the same

clock signal is applied to each one.

In this shift register, we can apply the parallel inputs to each D flip-flop

by making Preset Enable to 1. We can apply the parallel inputs through

No of positive edge of

Clock

Q2 Q1 Q0

0 0 1 1LSB

1 - 0 1

2 - - 0LSB

IFT 211 DIGITAL AND LOGIC DESIGN

153

preset or clear. These two are asynchronous inputs. That means, the flip-

flops produce the corresponding outputs, based on the values of

asynchronous inputs. In this case, the effect of outputs is independent of

clock transition. So, we will get the parallel outputs from each D flip-

flop.

Example

Let us see the working of 3-bit PIPO shift register by applying the binary

information “011” in parallel through preset inputs.

Since the preset inputs are applied before positive edge of Clock, the

initial status of the D flip-flops from leftmost to rightmost will be Q2Q1Q0

= 011. So, the binary information “011” is obtained in parallel at the

outputs of D flip-flops before applying positive edge of clock.

Therefore, the 3-bit PIPO shift register requires zero clock pulses in order

to produce the valid output. Similarly, the N-bit PIPO shift

register doesn’t require any clock pulse in order to shift ‘N’ bit

information.

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What is the primary function of a register in digital circuits?

A. To perform arithmetic operations

B. To store multiple bits of binary data

C. To decode binary inputs

D. To generate clock signals

Answer: B

Explanation: Registers are groups of flip-flops used to store binary data.

2. Which type of shift register allows serial input and serial

output?

A. SIPO

B. PISO

C. SISO

D. PIPO

Answer: C

Explanation: SISO stands for Serial In – Serial Out.

3. How many clock pulses are required for a 3-bit SISO shift

register to produce valid output?

A. 3

B. 4

C. 5

IFT 211 DIGITAL AND LOGIC DESIGN

154

D. 6

Answer: C

Explanation: A 3-bit SISO shift register requires 2N–1 = 5 clock pulses.

4. Which shift register allows serial input and parallel output?

A. SISO

B. SIPO

C. PISO

D. PIPO

Answer: B

Explanation: SIPO stands for Serial In – Parallel Out.

5. How many clock pulses are needed for a 3-bit SIPO shift

register to produce valid output?

A. 2

B. 3

C. 4

D. 5

Answer: B

Explanation: An N-bit SIPO shift register requires N clock pulses.

6. Which shift register allows parallel input and serial output?

A. SISO

B. SIPO

C. PISO

D. PIPO

Answer: C

Explanation: PISO stands for Parallel In – Serial Out.

7. How many clock pulses are needed for a 3-bit PISO shift

register to produce valid output?

A. 2

B. 3

C. 4

D. 5

Answer: A

Explanation: An N-bit PISO shift register requires N–1 clock pulses.

8. Which shift register allows parallel input and parallel output?

A. SISO

B. SIPO

C. PISO

D. PIPO

Answer: D

Explanation: PIPO stands for Parallel In – Parallel Out.

9. What kind of inputs are used in PIPO shift registers to load

data?

A. Serial inputs

B. Clock inputs

C. Asynchronous inputs

IFT 211 DIGITAL AND LOGIC DESIGN

155

D. Enable inputs

Answer: C

Explanation: PIPO registers use asynchronous inputs like preset or clear.

10. How many clock pulses are needed for a 3-bit PIPO shift

register to produce valid output?

A. 0

B. 1

C. 2

D. 3

Answer: A

Explanation: PIPO registers produce output immediately without clock

pulses.

Fill in the Blank Questions

1. A shift register uses __________ flip-flops to store multiple bits.

Answer: D

2. The SISO shift register requires __________ clock pulses to shift

N bits.

Answer: 2N–1

3. The SIPO shift register produces __________ output.

Answer: parallel

4. The PISO shift register uses __________ inputs to load data.

Answer: parallel

5. The PIPO shift register uses __________ inputs to load and output

data without clock pulses.

Answer: asynchronous

IFT 211 DIGITAL AND LOGIC DESIGN

156

Unit 4 Counters

In previous lectures, we discussed various shift registers & counters

using D flipflops. Now, let us discuss various counters using T flip-flops.

We know that T flip-flop toggles the output either for every positive edge

of clock signal or for negative edge of clock signal.

An ‘N’ bit binary counter consists of ‘N’ T flip-flops. If the counter counts

from 0 to 2𝑁 − 1, then it is called as binary up counter. Similarly, if the

counter counts down from 2𝑁 − 1 to 0, then it is called as binary down

counter.

There are two types of counters based on the flip-flops that are connected

in synchronous or not.

• Asynchronous counters

• Synchronous counters

Asynchronous Counters

If the flip-flops do not receive the same clock signal, then that counter is

called as Asynchronous counter. The output of system clock is applied

as clock signal only to first flip-flop. The remaining flip-flops receive the

clock signal from output of its previous stage flip-flop. Hence, the outputs

of all flip-flops do not change affect at the same time.

Now, let us discuss the following two counters one by one.

• Asynchronous Binary up counter

• Asynchronous Binary down counter

Asynchronous Binary Up Counter

An ‘N’ bit Asynchronous binary up counter consists of ‘N’ T flip-flops.

It counts from 0 to 2𝑁 − 1. The block diagram of 3-bit Asynchronous

binary up counter is shown in the following figure.

The 3-bit Asynchronous binary up counter contains three T flip-flops and

the T-input of all the flip-flops are connected to ‘1’. All these flip-flops

are negative edge triggered but the outputs change asynchronously. The

IFT 211 DIGITAL AND LOGIC DESIGN

157

clock signal is directly applied to the first T flip-flop. So, the output of

first T flip-flop toggles for every negative edge of clock signal.

The output of first T flip-flop is applied as clock signal for second T flip-

flop. So, the output of second T flip-flop toggles for every negative edge

of output of first T flip-flop. Similarly, the output of third T flip-flop

toggles for every negative edge of output of second T flip-flop, since the

output of second T flip-flop acts as the clock signal for third T flip-flop.

Assume the initial status of T flip-flops from rightmost to leftmost

is Q2Q1Q0 = 000. Here, Q2 & Q0 are MSB & LSB respectively. We can

understand the working of 3-bit asynchronous binary counter from the

following table.

No of negative edge of

Clock

Q0LSB Q1 Q2MSB

0 0 0 0

1 1 0 0

2 0 1 0

3 1 1 0

4 0 0 1

5 1 0 1

6 0 1 1

7 1 1 1

Here Q0 toggled for every negative edge of clock signal. Q1 toggled for

every Q0 that goes from 1 to 0, otherwise remained in the previous state.

Similarly, Q2 toggled for every Q1 that goes from 1 to 0, otherwise

remained in the previous state.

The initial status of the T flip-flops in the absence of clock signal

is Q2Q1Q0= 000. This is incremented by one for every negative edge of

clock signal and reached to maximum value at 7th negative edge of clock

signal. This pattern repeats when further negative edges of clock signal

are applied.

Asynchronous Binary Down Counter

An ‘N’ bit Asynchronous binary down counter consists of ‘N’ T flip-

flops. It counts from 2𝑁 − 1 to 0. The block diagram of 3-bit

Asynchronous binary down counter is shown in the following figure.

IFT 211 DIGITAL AND LOGIC DESIGN

158

The block diagram of 3-bit Asynchronous binary down counter is similar

to the block diagram of 3-bit Asynchronous binary up counter. But, the

only difference is that instead of connecting the normal outputs of one

stage flip-flop as clock signal for next stage flip-flop, connect

the complemented outputs of one stage flip-flop as clock signal for next

stage flip-flop. Complemented output goes from 1 to 0 is same as the

normal output goes from 0 to 1.

Assume the initial status of T flip-flops from rightmost to leftmost

is Q2Q1Q0 = 000. Here, Q2 & Q0 are MSB & LSB respectively. We can

understand the working of 3-bit asynchronous binary down counter from

the following table.

No of negative edge of

Clock

Q0LSB Q1 Q2MSB

0 0 0 0

1 1 1 1

2 0 1 1

3 1 0 1

4 0 0 1

5 1 1 0

6 0 1 0

7 1 0 0

Here Q0 toggled for every negative edge of clock signal. Q1 toggled for

every Q0 that goes from 0 to 1, otherwise remained in the previous state.

Similarly, Q2 toggled for every Q1 that goes from 0 to 1, otherwise

remained in the previous state.

IFT 211 DIGITAL AND LOGIC DESIGN

159

The initial status of the T flip-flops in the absence of clock signal

is Q2Q1Q0 = 000. This is decremented by one for every negative edge of

clock signal and reaches to the same value at 8th negative edge of clock

signal. This pattern repeats when further negative edges of clock signal

are applied.

Synchronous Counters

If all the flip-flops receive the same clock signal, then that counter is

called as Synchronous counter. Hence, the outputs of all flip-flops

change affect at the same time.

Now, let us discuss the following two counters one by one.

• Synchronous Binary up counter

• Synchronous Binary down counter

Synchronous Binary Up Counter

An ‘N’ bit Synchronous binary up counter consists of ‘N’ T flip-flops. It

counts from 0 to 2𝑁 − 1. The block diagram of 3-bit Synchronous binary

up counter is shown in the following figure.

The 3-bit Synchronous binary up counter contains three T flip-flops &

one 2-input AND gate. All these flip-flops are negative edge triggered and

IFT 211 DIGITAL AND LOGIC DESIGN

160

the outputs of flip-flops change affect synchronously. The T inputs of

first, second and third flip-flops are 1, Q0 & Q1Q0 respectively.

The output of first T flip-flop toggles for every negative edge of clock

signal. The output of second T flip-flop toggles for every negative edge

of clock signal if Q0 is 1. The output of third T flip-flop toggles for every

negative edge of clock signal if both Q0 & Q1 are 1.

Synchronous Binary Down Counter

An ‘N’ bit Synchronous binary down counter consists of ‘N’ T flip-flops.

It counts from 2𝑁 − 1 to 0. The block diagram of 3-bit Synchronous

binary down counter is shown in the following figure

The 3-bit Synchronous binary down counter contains three T flip-flops &

one 2-input AND gate. All these flip-flops are negative edge triggered and

the outputs of flip-flops change affect synchronously. The T inputs of

first, second and third flip-flops are 1, Q0′ &' Q1′ Q0′ respectively.

The output of first T flip-flop toggles for every negative edge of clock

signal. The output of second T flip-flop toggles for every negative edge

of clock signal if Q0′ is 1. The output of third T flip-flop toggles for every

negative edge of clock signal if both Q1′ & Q0′ are 1.

Tutor Marked Assignment

1. If the resolution of a digital-to-analog converter is approximately

0.4% of its full-scale range, then it is?

2. A bidirectional 4-bit shift register is storing the nibble 1101. Its

input is HIGH. The nibble 1011 is waiting to be entered on the

serial data-input line. After three clock pulses, the shift register is

storing ________?

3. How many different states does a 3-bit asynchronous down counter

have?

4. In a 3-bit asynchronous down counter, at the first negative

transition of the clock, the counter content becomes

____________?

5. For a 4 bit MOD-16 ripple counter using J-K flip-flop, the

propagation delay of each flip flop is 50ns. What is the maximum

clock frequency can be used?

SELF ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What type of flip-flop is commonly used in binary counters?

A. D flip-flop

B. SR flip-flop

C. T flip-flop

IFT 211 DIGITAL AND LOGIC DESIGN

161

D. JK flip-flop

Answer: C

Explanation: T flip-flops toggle their output on clock edges, making

them ideal for counters.

2. What is the range of a 3-bit binary up counter?

A. 0 to 3

B. 0 to 7

C. 1 to 8

D. 0 to 15

Answer: B

Explanation: A 3-bit counter counts from 0 to 2^3 - 1 = 7.

3. In an asynchronous counter, which flip-flop receives the

system clock directly?

A. First flip-flop

B. Second flip-flop

C. Last flip-flop

D. None

Answer: A

Explanation: Only the first flip-flop receives the system clock; others are

triggered by previous outputs.

4. What distinguishes asynchronous counters from synchronous

counters?

A. Use of D flip-flops

B. All flip-flops share the same clock

C. Flip-flops are triggered sequentially

D. They count in reverse

Answer: C

Explanation: In asynchronous counters, flip-flops are triggered by the

output of the previous stage.

5. What is the toggling condition for Q1 in a 3-bit asynchronous

up counter?

A. Every clock edge

B. When Q0 goes from 0 to 1

C. When Q0 goes from 1 to 0

D. When Q2 toggles

Answer: C

Explanation: Q1 toggles when Q0 transitions from 1 to 0.

6. How is the clock signal routed in an asynchronous down

counter?

A. Directly to all flip-flops

B. Through complemented outputs of previous flip-flops

C. Through AND gates

D. Through serial input

Answer: B

Explanation: Complemented outputs are used to trigger the next flip-flop

in down counters.

IFT 211 DIGITAL AND LOGIC DESIGN

162

7. What is the toggling condition for Q2 in a synchronous up

counter?

A. When Q0 is 1

B. When Q1 is 1

C. When Q0 and Q1 are both 1

D. Every clock edge

Answer: C

Explanation: Q2 toggles when both Q0 and Q1 are 1.

8. Which counter type updates all flip-flops simultaneously?

A. Asynchronous counter

B. Synchronous counter

C. Down counter

D. Ripple counter

Answer: B

E. Explanation: Synchronous counters use a common clock signal

for all flip-flops.

9. What is the toggling condition for Q1 in a synchronous down

counter?

A. When Q0 is 1

B. When Q0′ is 1

C. When Q1′ is 1

D. When Q2′ is 1

Answer: B

E. Explanation: Q1 toggles when Q0′ (complement of Q0) is 1.

10. What is the output pattern of a 3-bit asynchronous down

counter starting from 111?

A. 111 → 110 → 101 → 100 → 011 → 010 → 001 → 000

B. 000 → 001 → 010 → 011 → 100 → 101 → 110 → 111

C. 111 → 000 → 111

D. 000 → 111 → 000

Answer: A

Explanation: The counter decrements from 7 (111) to 0 (000).

Fill in the Blank Questions

1. A 3-bit binary counter counts from 0 to __________.

Answer: 7

2. In asynchronous counters, flip-flops are triggered by the

__________ of the previous flip-flop.

Answer: output

3. In synchronous counters, all flip-flops receive the same

__________ signal.

Answer: clock

IFT 211 DIGITAL AND LOGIC DESIGN

163

4. The T flip-flop toggles its output on every __________ edge of the

clock signal.

5. Answer: negative

6. In a synchronous down counter, the third flip-flop toggles when

both Q1′ and __________ are 1.

Answer: Q0′

IFT 211 DIGITAL AND LOGIC DESIGN

164

Module 5 Memory Devices and Programmable Logic

Unit 1 Memory Devices and Classification

Unit 2 Programmable Logic Array (PLAs)

Unit 3 Programmable Logic Devices (PLDs)

Unit 4 Field-Programmable Gate Arrays (FGPAs)

Unit 1 Memory Devices and Classification

Memory structures are crucial in digital design. – ROM, PROM, EPROM,

RAM, SRAM, (S) DRAM, RDRAM, …

➢ All memory structures have an address bus and a data bus – Possibly

other control signals to control output etc. •E.g. 4 Bit Address bus

with 5 Bit Data Bus ADDR DOUT

There are two types of memories that are used in digital systems:

• Random-access memory (RAM): perform both the write and read

operations.

• Read-only memory (ROM): perform only the read operation.

The read-only memory is a programmable logic device. Other such units

are the programmable logic array (PLA), the programmable array

logic (PAL), and the field-programmable gate array (FPGA).

Random-Access Memory

A memory unit stores binary information in groups of bits called words.

• byte = 8 bits

• word = 2 bytes

The communication between a memory and its environment is achieved

through data input and output lines, address selection lines, and

control lines that specify the direction of transfer.

• In random-access memory, the word locations may be thought of

as being separated in space, with each word occupying one

particular location.

• In sequential-access memory, the information stored in some

medium is not immediately accessible, but is available only certain

intervals of time. A magnetic disk or tape unit is of this type.

• In a random-access memory, the access time is always the same

regardless of the particular location of the word.

IFT 211 DIGITAL AND LOGIC DESIGN

165

• In a sequential-access memory, the time it takes to access a word

depends on the position of the word with respect to the reading

head position; therefore, the access time is variable.

Static RAM

• SRAM consists essentially of internal latches that store the binary

information.

• The stored information remains valid as long as power is applied

to the unit.

• SRAM is easier to use and has shorter read and write cycles.

• Low density, low capacity, high cost, high speed, high power

consumption.

Dynamic RAM

• DRAM stores the binary information in the form of electric

charges on capacitors.

• The capacitors are provided inside the chip by MOS transistors.

• the capacitors tends to discharge with time and must be

periodically recharged by refreshing the dynamic memory.

• DRAM offers reduced power consumption and larger storage c

High density, high capacity, low cost, low speed, low power consumption.

• The equivalent logic of a binary cell that stores one bit of

information is apacity in a single memory chip.

shown below.

• Read/Write = 0, select = 1, input data to S-R latch

• Read/Write = 1, select = 1, output data from S-R latch

IFT 211 DIGITAL AND LOGIC DESIGN

166

SELF-ASSESMENT EXERCISES

Multiple Choice Questions

1. What is the primary function of memory in digital systems?

A. To perform calculations

B. To store data and instructions

C. To display output

D. To generate clock signals

IFT 211 DIGITAL AND LOGIC DESIGN

167

2. Which type of memory is volatile?

A. ROM

B. Flash

C. RAM

D. EEPROM

3. What does ROM stand for?

A. Random Output Memory

B. Read Only Memory

C. Real Operating Module

D. Rapid Online Memory

4. Which memory retains data even when power is off?

A. RAM

B. ROM

C. Cache

D. Register

5. What type of memory is used for temporary data storage?

A. ROM

B. RAM

C. Flash

D. Hard Disk

6. Which of the following is a non-volatile memory?

A. RAM

B. Cache

C. ROM

D. DRAM

7. What is the function of cache memory?

A. Long-term storage

B. High-speed temporary storage

C. Permanent data retention

D. Data encryption

8. Which memory type is programmable and erasable?

A. RAM

B. PROM

C. EPROM

D. Cache

9. What does EEPROM stand for?

A. Electrically Erasable Programmable Read Only Memory

B. Enhanced Erasable Programmed Output Module

C. Electronic Erased Primary ROM

D. External Erasable Processing Memory

10. Which memory type is used to store BIOS in computers?

A. RAM

B. ROM

C. Cache

D. DRAM

IFT 211 DIGITAL AND LOGIC DESIGN

168

Fill in the Blank Questions

1. __________ memory loses its contents when power is turned off.

→ RAM

2. __________ stands for Read Only Memory. → ROM

3. __________ memory is used for high-speed temporary storage. →

Cache

4. __________ is a type of memory that can be electrically erased

and reprogrammed. → EEPROM

5. The BIOS in a computer is stored in __________. → ROM

IFT 211 DIGITAL AND LOGIC DESIGN

169

Unit 2 Programmable Logic Array

• The decoder in PROM is replaced by an array of AND gates that

can be programmed to generate any product term of the input variables.

• The product terms are then connected to OR gates to provide the

sum of products for the required Boolean functions.

• The output is inverted when the XOR input is connected to 1 (since

x⊕1 = x’). The output doesn’t change and connect to 0 (since x⊕0 = x).

F1 = AB’+AC+A’BC’

F2 = (AC+BC)’

Implement the following two Boolean functions with a PLA:

• F1(A, B, C) = ∑(0, 1, 2, 4)

• F2(A, B, C) = ∑(0, 5, 6, 7)

IFT 211 DIGITAL AND LOGIC DESIGN

170

IFT 211 DIGITAL AND LOGIC DESIGN

171

SELF ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What component replaces the decoder in a PLA compared to

a PROM?

A. OR gates

B. XOR gates

C. AND gates

D. Flip-flops

Answer: C

Explanation: In a PLA, the decoder is replaced by a programmable array

of AND gates to generate product terms.

2. What is the role of the OR gates in a PLA?

A. To invert the output

B. To generate product terms

C. To combine product terms into sum-of-products expressions

D. To store binary data

Answer: C

Explanation: OR gates in a PLA combine the product terms to form the

final output functions.

3. What happens when the XOR input in a PLA is connected to

1?

A. The output is unchanged

B. The output is inverted

C. The input is disabled

D. The output is multiplied

Answer: B

Explanation: Connecting XOR input to 1 inverts the output since x \oplus

1 = x'.

4. Which of the following is a valid product term for F₁ = AB′ +

AC + A′BC′?

A. AB

B. AC

C. A′B′C

D. BC

Answer: B

Explanation: AC is one of the product terms used in the sum-of-products

expression for F₁.

5. How many product terms are needed to implement F₁ = AB′ +

AC + A′BC′?

A. 2

B. 3

C. 4

IFT 211 DIGITAL AND LOGIC DESIGN

172

D. 5

Answer: B

Explanation: F₁ uses three product terms: AB′, AC, and A′BC′.

6. What is the simplified Boolean expression for F₂ = (AC + BC)′?

A. AC + BC

B. A′C′ + B′C′

C. A′ + B′

D. F₂ = A′B′ + A′C′ + B′C′

Answer: D

Explanation: The complement of AC + BC is simplified using

DeMorgan’s laws and K-map techniques.

7. What does the PLA programming table specify?

A. Truth table of the circuit

B. Input-output voltage levels

C. Mapping of product terms to inputs and outputs

D. Clock timing

Answer: C

Explanation: The PLA programming table shows how product terms are

formed and which outputs they affect.

8. How many inputs are used in the PLA shown in the example?

A. 2

B. 3

C. 4

D. 5

Answer: B

Explanation: The PLA uses three inputs: A, B, and C.

9. What is the output of a PLA when the XOR input is connected

to 0?

A. The output is inverted

B. The output is unchanged

C. The output is disabled

D. The output is multiplied

Answer: B

Explanation: When XOR input is 0, the output remains unchanged since

x \oplus 0 = x.

10. Which of the following Boolean functions is implemented using

a PLA in the example?

A. F₁ = AB + AC

B. F₂ = AB + AC + A′B′C′

C. F₁ = AB′ + AC + A′BC′

D. F₂ = AC + BC

Answer: C

Explanation: F₁ is implemented as AB′ + AC + A′BC′ in the PLA

example.

Fill in the Blank Questions

IFT 211 DIGITAL AND LOGIC DESIGN

173

1. In a PLA, the decoder is replaced by a programmable array of

__________ gates.

Answer: AND

2. The output of a PLA is inverted when the XOR input is connected

to __________.

Answer: 1

3. The Boolean function F₁ = AB′ + AC + A′BC′ is implemented

using __________ product terms.

Answer: three

4. The PLA programming table maps product terms to __________

and __________.

Answer: inputs, outputs

5. The simplified expression for F₂ = (AC + BC)′ is derived using

__________ maps.

Answer: Karnaugh

IFT 211 DIGITAL AND LOGIC DESIGN

174

Unit 3 Programmable Logic Device

What is PLD?

A PLD is a class of integrated circuit that may be configured to carry out

a number of different digital logic operations. Common uses for them

include simple logic circuits, state machines, and counters, which only

need a few logic gates to function.

PLD programming

A number of techniques can be used to program PLDs, including:

• In-circuit programming (ICP): PLDs can be programmed while

they are inserted in a circuit using a technique called in-circuit

programming (ICP). Typically, production applications adopt this

technique.

• External programming (EPROM): PLDs can be programmed

using external programming (EPROM), which involves removing the

PLD from the circuit and using an external programmer. Applications in

development and prototype are frequently employed with this technique.

• Flash programming (Flash): Flash programming is a similar

technique to EPROM programming for PLDs, however it allows for

numerous PLD reprogramming. This approach is frequently employed in

situations when it may be necessary to modify the logic function.

PLDs are often programmed using a software tool that creates the PLD's

programming data. Typically, the software tool has a graphical user

interface that enables the user to design the PLD's logic function.

The software tool generates the PLD programming data when the logic

function has been created. Then, through one of the aforementioned

techniques, the programming data is downloaded to the PLD.

SELF ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What does PLD stand for?

A. Programmable Logic Decoder

B. Programmable Logic Device

https://www.ampheo.com/c/plds-programmable-logic-device

IFT 211 DIGITAL AND LOGIC DESIGN

175

C. Peripheral Logic Driver

D. Parallel Logic Design

Answer: B

Explanation: PLD stands for Programmable Logic Device.

2. Which of the following is a typical use for PLDs?

A. Image processing

B. Simple logic circuits

C. Audio amplification

D. Data storage

Answer: B

Explanation: PLDs are commonly used for simple logic circuits, state

machines, and counters.

3. What is the main advantage of PLDs?

A. Fixed functionality

B. High power consumption

C. Configurability for different logic operations

D. Analog signal processing

Answer: C

Explanation: PLDs can be configured to perform various digital logic

operations.

4. Which programming method allows PLDs to be programmed

while still in the circuit?

A. EPROM

B. Flash

C. In-circuit programming (ICP)

D. External programming

Answer: C

Explanation: ICP allows PLDs to be programmed without removing

them from the circuit.

5. Which programming method is commonly used for prototypes

and development?

A. ICP

B. EPROM

C. Flash

D. ROM

Answer: B

Explanation: EPROM programming is often used in development and

prototyping.

6. What is a key benefit of flash programming for PLDs?

A. It is permanent

B. It allows multiple reprogrammings

C. It requires no software

D. It uses analog signals

Answer: B

Explanation: Flash programming enables PLDs to be reprogrammed

multiple times.

IFT 211 DIGITAL AND LOGIC DESIGN

176

7. What kind of interface do most PLD software tools provide?

A. Command-line only

B. Graphical user interface

C. Text editor

D. Voice-controlled interface

Answer: B

Explanation: Most PLD tools offer a GUI for designing logic functions.

8. What does the software tool generate for PLD programming?

A. Clock signals

B. Logic gates

C. Programming data

D. Binary counters

Answer: C

Explanation: The software tool generates the programming data for the

PLD.

9. Which method involves removing the PLD from the circuit for

programming?

A. ICP

B. Flash

C. EPROM

D. RAM

Answer: C

Explanation: EPROM programming requires the PLD to be removed

from the circuit.

10. Which technique is best suited for production environments?

A. EPROM

B. Flash

C. ICP

D. Manual wiring

Answer: C

Explanation: ICP is typically used in production applications.

Fill in the Blank Questions

1. PLD stands for __________ Logic Device.

Answer: Programmable

2. PLDs are commonly used in __________ logic circuits and

counters.

Answer: simple

3. __________ programming allows PLDs to be programmed while

still in the circuit.

Answer: In-circuit

4. __________ programming allows PLDs to be reprogrammed

multiple times.

Answer: Flash

5. A __________ user interface is typically used in PLD software

tools.

Answer: graphical

IFT 211 DIGITAL AND LOGIC DESIGN

177

Unit 4 Field-Programmable Gate Arrays

What is a FPGA Board?

FPGA is the most versatile type of PLD. They are made up of many logic

components that can be coupled in many ways. They are therefore perfect

for applications that need a lot of flexibility and customization. FPGAs

are frequently used in programs for embedded systems, signal processing,

networking, cryptography, industrial automation, and other things.

FPGA programming

A programmable routing network can be used to connect the grid of logic

cells that make up FPGAs. This makes it possible to arrange FPGAs to

carry out a wide range of functions.

A number of techniques can be used to program FPGAs, including:

• High-level synthesis (HLS): High-level synthesis (HLS) is a

technique for programming FPGAs that creates the programming

information for the FPGA using a high-level programming

language, such C or C++. Usually, complicated applications that

demand a high level of performance adopt this approach.

• Verilog HDL: An FPGA's logic functions are described using

Verilog HDL, a hardware description language. Usually, medium-

to-complex applications adopt this approach.

• VHDL: Similar to Verilog HDL, VHDL is a hardware description

language. The majority of the time, complicated applications adopt

this technique.

https://www.ampheo.com/c/fpgas-field-programmable-gate-array
https://www.ampheo.com/blog/basic-introduction-of-fpga-applications-structures-and-components.html
https://en.wikipedia.org/wiki/High-level_synthesis
https://www.ampheo.com/blog/what-is-verilog-module-multiplexer-and-verilog-vs-vhdl.html
https://www.ampheo.com/blog/a-detailed-introduction-to-vhdl-programming-language.html

IFT 211 DIGITAL AND LOGIC DESIGN

178

 A software tool that produces the programming data for the FPGA is

commonly used to program FPGAs. Typically, the software tool has a

graphical user interface that enables the user to design the FPGA's logic

function.

The software tool generates the FPGA programming data when the logic

function has been created. A programming tool, such as a USB

programmer, is then used to download the programming data to the

FPGA.

Tutor Marked Assignment

1. Design a Full Adder using ROM and PLA

2. Design a 5X2 RAM using D Flip-flop

3. How many 16K * 4 RAMs are required to achieve a memory with

a capacity of 64K and a word length of 8 bits?

4. The complex programmable logic device contains several PLD

blocks and __________?

5. The difference between a PAL & a PLA is ____________?

SELF-ASSESMENT EXERCISES

Multiple Choice Questions (MCQs)

1. What does FPGA stand for?

A. Flexible Programmable Gate Array

B. Field-Programmable Gate Array

C. Fixed-Performance Gate Array

D. Fast Processing Gate Architecture

Answer: B

Explanation: FPGA stands for Field-Programmable Gate Array.

2. Which of the following best describes an FPGA?

A. A fixed-function processor

B. A memory storage device

C. A customizable logic device

D. A digital-to-analog converter

Answer: C

Explanation: FPGAs are highly flexible and customizable logic devices.

3. Which application is NOT typically associated with FPGAs?

A. Cryptography

B. Industrial automation

C. Word processing

D. Signal processing

Answer: C

Explanation: Word processing is typically handled by general-purpose

CPUs, not FPGAs.

4. What connects the logic cells in an FPGA?

A. Serial bus

B. Clock signal

C. Programmable routing network

IFT 211 DIGITAL AND LOGIC DESIGN

179

D. USB interface

Answer: C

Explanation: A programmable routing network links the logic cells in an

FPGA.

5. Which programming method uses high-level languages like C

or C++?

A. VHDL

B. Verilog HDL

C. High-Level Synthesis (HLS)

D. Assembly

Answer: C

Explanation: HLS allows FPGA programming using high-level

languages.

6. Which hardware description language is similar to Verilog

HDL?

A. Python

B. VHDL

C. Java

D. C++

Answer: B

Explanation: VHDL is another hardware description language used for

FPGA programming.

7. What is the role of the software tool in FPGA programming?

A. To generate clock signals

B. To create logic gates

C. To produce programming data for the FPGA

D. To store binary data

Answer: C

Explanation: The software tool designs the logic and generates

programming data.

8. What is typically used to download programming data to an

FPGA?

A. HDMI cable

B. USB programmer

C. Ethernet cable

D. Serial port

Answer: B

Explanation: A USB programmer is commonly used to load data into the

FPGA.

9. Which method is most suitable for medium-to-complex FPGA

applications?

A. VHDL

B. Verilog HDL

C. HLS

D. Python

Answer: B

IFT 211 DIGITAL AND LOGIC DESIGN

180

Explanation: Verilog HDL is widely used for medium-to-complex

FPGA designs.

10. What kind of interface do most FPGA software tools provide?

A. Command-line only

B. Graphical user interface

C. Text editor

D. Voice-controlled interface

Answer: B

Explanation: Most FPGA tools offer a GUI for designing logic

functions.

Fill in the Blank Questions

1. FPGA stands for __________ Programmable Gate Array.

Answer: Field

2. FPGAs are made up of a grid of __________ cells.

Answer: logic

3. __________ is a high-level programming technique used for

FPGA design.

Answer: High-Level Synthesis (HLS)

4. __________ and VHDL are hardware description languages used

to program FPGAs.

Answer: Verilog HDL

5. A __________ is commonly used to transfer programming data to

an FPGA.

Answer: USB programmer

